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MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc,abd ,abe,acd ,ace}

(The spanning trees of the graph.)
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MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc,abd ,abe,acd ,ace}

(The bases of the vector configuration.)
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MOTIVATING EXAMPLES: 3. Matching Theory.

Goal: Marry as many people as possible.

No gay marriage in Texas.(!) No poligamy.

 a    b    c    d    e    f   

 1    2    3   

Wednesday, October 2, 13

Possible married men: {abc,abd ,abe,acd ,ace}

(The systems of distinct representatives.)
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MOTIVATING EXAMPLES: 4. Field Extensions.

Goal: Choose a transcendence basis for C[x , y , z] over C.

Maximal set with no algebraic relations with coeffs. in C.

a = z3

b = x + y
c = x − y
d = xy
e = x2y2

f = 1

Solutions: {abc,abd ,abe,acd ,ace}

(The transcendence bases of the field extension.)
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MOTIVATING EXAMPLES: 5. Catalan combinatorics.

Goal: Choose up-steps to get to (6,0) staying above the x-axis.

Never cross the x-axis.

 b    a    c   

 c    a    d   

 b    a    e    b    a    d   

 c    a    e   

Wednesday, October 2, 13

Solutions: {abc,abd ,abe,acd ,ace}

(The Dyck paths of length 6.)
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MATROIDS.

Definition. [MacLane / Nakasawa / Whitney 1930s]
A matroid (E ,B) consists of:

• A ground set E , and

• A collection B of subsets of E called bases such that:

If A and B are bases and a ∈ A \ B, then
there exists b ∈ B \ A such that A \ {a} ∪ {b} is a basis.

Example. E = {a,b, c,d ,e, f} B = {abc,abd ,abe,acd ,ace}

Proposition. The 5 examples above give 5 families of matroids.

Proof. This “basis exchange axiom" holds in graph theory, linear
algebra, matching theory, field extension theory, Catalan theory.



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MATROIDS.

Definition. [MacLane / Nakasawa / Whitney 1930s]
A matroid (E ,B) consists of:

• A ground set E , and

• A collection B of subsets of E called bases such that:

If A and B are bases and a ∈ A \ B, then
there exists b ∈ B \ A such that A \ {a} ∪ {b} is a basis.

Example. E = {a,b, c,d ,e, f} B = {abc,abd ,abe,acd ,ace}

Proposition. The 5 examples above give 5 families of matroids.

Proof. This “basis exchange axiom" holds in graph theory, linear
algebra, matching theory, field extension theory, Catalan theory.



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

So a theorem in matroid theory gives us theorems in ≥ 5 areas!

For example:

Theorem. All the bases of a matroid have the same size.

Corollaries.
• All spanning trees of a graph have = number of edges. (V-1)
• All bases of a vector space have = size. (Dimension)
• All maxl sets of marriable men have = size. (Matching #)
• All transcendence bases of L/K have = size. (Transc. deg.)
• All Dyck paths of length 2n have = number of up-steps. (n)
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A theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples.

If E = {a,b, c,d ,e, f}
and B = {abc,abd ,abe,acd ,ace}.

then B∗ = {def , cef , cdf ,bef ,bdf}.



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

A theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples.

If E = {a,b, c,d ,e, f}
and B = {abc,abd ,abe,acd ,ace}.

then B∗ = {def , cef , cdf ,bef ,bdf}.



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

A theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples. GRAPHS.

• If M is the matroid of a planar graph G, then M∗ is the
matroid of the dual graph G∗.

 a   
 b   

 c   

 f   
 e   

 d   

 a   
 f   

 c   

 e   
 b   

 d   

Wednesday, October 2, 13

B∗ = {def , cef , cdf ,bef ,bdf}.
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So a theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples. VECTORS.

Say M is the matroid of vectors {a1, . . . ,an}.
Write them as column vectors in Rd and let

A = rowspace[a1a2 . . . an],

and choose b1, . . . ,bn in Rn−d so that

A⊥ = rowspace[b1b2 . . . bn]

Then M∗ is the matroid of {b1, . . . ,bn}.
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So a theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples. MATCHINGS.

Unfortunately, if M is the matroid of a matching problem,
M∗ is not necessarily the matroid of a matching problem!

Fortunately,
M∗ is the matroid of a routing problem – a 6th kind of matroid.
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So a theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples. FIELD EXTENSIONS.

If M is a matroid coming from elements of a field extension,
noone knows whether M∗ also comes from a field extension.

This problem is wide open!
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So a theorem in matroid theory gives us theorems in ≥ 5 areas!

Theorem. If M = (E ,B) is a matroid, then M∗ = (E ,B∗) is the
dual matroid, where

B∗ = {E \ B : B is a basis of M}

Examples. CATALAN.

If M is the Catalan matroid, then M∗ ∼= M:

 e    d    f    e    c    f   

 f    e    b   

 d    c    f   

 d    b    f   

Wednesday, October 2, 13

B∗ = {def , cef , cdf ,bef ,bdf}.
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Corte de comerciales.

San Francisco State University – Colombia Combinatorics Initiative

For more information on:

• enumerative combinatorics
• matroids,
• polytopes,
• Coxeter groups,
• combinatorial commutative algebra, and
• Hopf algebras in combinatorics

you may see the (200+) videos and lecture notes of my courses
at San Francisco State University and the U. de Los Andes:

http://math.sfsu.edu/federico/
http://youtube.com/user/federicoelmatematico
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THE TUTTE POLYNOMIAL.

Let M = (E ,B) be a matroid.

(If you prefer, think that E is a set of vectors in Rd .)

The rank of A ⊆ E is

r(A) = max
B basis

|A ∩ B|;

that is, the size of the largest “independent" set in A.

Definition. [Tutte, 1967] The Tutte polynomial of A is

TA(x , y) =
∑
B⊆A

(x − 1)r(A)−r(B)(y − 1)|B|−r(B).
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 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

S |S| r(S) (x − 1)r−r(S)(y − 1)|S|−r(S)

∅ 0 0 (x − 1)3(y − 1)0

a b c d e 1 1 (x − 1)2(y − 1)0

f 1 0 (x − 1)3(y − 1)1

ab ac ad ae bc bd be cd ce 2 2 (x − 1)1(y − 1)0

af bf cf de df ef 2 1 (x − 1)2(y − 1)1

...
...

...
...

T (x , y) = (x − 1)3+5(x − 1)2+(x − 1)3(y − 1)+9(x − 1) + · · ·
= x3y + x2y + x2y2 + xy2 + xy3

Clearly there is something more to this story...
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WHY CARE ABOUT THE TUTTE POLYNOMIAL?

Many interesting quantities are evaluations of TA(x , y).

For graphs:

• T (1,1) = number of spanning trees.
• T (2,0) = number of acyclic orientations of edges.
• T (0,2) = number of totally cyclic orientations of edges.
• (−1)v−c qc T (1− q,0) = chromatic polynomial = number

of proper q-colorings of the vertices.
• (−1)e−v+c T (0,1− t) = flow polynomial = number of

nowhere zero t-flows of the edges.
[Tutte, 1947] [Crapo, 1969] [Stanley, 1973] [LasVergnas, 1980]



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

WHY CARE ABOUT THE TUTTE POLYNOMIAL?

Many interesting quantities are evaluations of TA(x , y).

For graphs:

• T (1,1) = number of spanning trees.
• T (2,0) = number of acyclic orientations of edges.
• T (0,2) = number of totally cyclic orientations of edges.
• (−1)v−c qc T (1− q,0) = chromatic polynomial = number

of proper q-colorings of the vertices.
• (−1)e−v+c T (0,1− t) = flow polynomial = number of

nowhere zero t-flows of the edges.
[Tutte, 1947] [Crapo, 1969] [Stanley, 1973] [LasVergnas, 1980]



Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

Many interesting invariants of A are evaluations of TA(x , y).

For the Catalan matroid: [A. 02]

• T (1,1) = 1
n+1

(2n
n

)
(Catalan numbers)

• If a(P) = number of up-steps before the first down-step,
and b(P) = number of returns to the x-axis.

T (x , y) =
∑

P Dyck

xa(P)yb(P)

 b    a    c   

 c    a    d   

 b    a    e    b    a    d   

 c    a    e   

Wednesday, October 2, 13

T (x , y) = x3y + x2y + x2y2 + xy2 + xy3
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Many interesting invariants of A are evaluations of TA(x , y).

For the Catalan matroid: For a path P let
a(P) = number of up-steps before the first down-step,
b(P) = number of times the path bounces on the x-axis.

T (x , y) =
∑

P Dyck

xa(P)yb(P)

Theorem. The Tutte polynomials of M and M∗ are related by

TM∗(x , y) = TM(y , x).

Since C∗n ∼= Cn we get TCn(x , y) = TCn(y , x), so

Theorem. [A. 2002]
(# of Dyck paths of 2n steps, a initial upsteps, b bounces) =
(# of Dyck paths of 2n steps, b initial upsteps, a bounces).
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Many interesting invariants of A are evaluations of TA(x , y).

For vector arrangements:

• T (1,1) = number of bases.
• T (2,1) = number of independent sets.
• T (1,2) = number of spanning sets.
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Many interesting invariants of A are evaluations of TA(x , y).

For vector arrangements 7→ hyperplane arrangements:

Vector a ∈ Kn 7→ Hyperplane Ha = {x ∈ (Kn)∗ : a · x = 0}.
Vector arr. A ⊆ Kn 7→ Complement V (A) = Kn \ hyperplanes

Example. C3

Vectors:
• ± ei (1 ≤ i ≤ 3)
• ± ei ± ej (1 ≤ i < j ≤ 3)

Hyperplanes:
2x = 0,2y = 0,2z = 0

x ± y = 0, y ± z = 0, z ± x = 0
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Many important invariants of A are evaluations of TA(x , y).

For hyperplane arrangements:

• (K = R)

(−1)nT (2,0) = number of regions of V (A)

[Zaslavsky, 1975]

• (K = C)

T (1− q,0) =
∑

i

dim H i(V (A);Z)(−q)i

[Orlik and Solomon, 1980, Goresky-MacPherson, 1988]

• (K = Fq)
|T (1− q,0)| = |V (A)|

[Crapo and Rota, 1970]
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WHY IS THE TUTTE POLYNOMIAL IN SO MANY PLACES?

Given a matroid M and an element e:

Deletion: M \ e has bases {B ∈ B : e /∈ B}
Contraction: M/e has bases {B − e : B ∈ B,e ∈ B}

A Tutte-Grothendieck invariant is a function which behaves
well under deletion and contraction:

f (M) = f (M \ e) + f (M/e) ( for all nontrivial e)

2

4

1

3

21

3

2 1

Theorem. (Brylawski, 1972) The Tutte polynomial is the universal
T-G invariant. Every other one is an evaluation of TM(x , y).
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COMPUTING TUTTE POLYNOMIALS

Finite field method.

Let χ(q, t) = (t − 1)r T
(

q+t−1
t−1 , t

)
.

Theorem. (A., 2002) Let A be a Z-arrangement. Let q be
a large prime, and let Aq be the induced arrangement in Fn

q.
Then

qn−rχA(q, t) =
∑

p∈Fn
q

th(p)

where h(p) = number of hyperplanes of Aq that p lies on.

Computing Tutte polynomials is #P-hard, so we cannot expect
miracles from this method. Still, it is often very useful.
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An application: Root systems.

Root systems are arguably the most important vector
configurations in mathematics. They are crucial in the
classification of regular polytopes, simple Lie groups and Lie
algebras, cluster algebras, etc.

“Classical root systems":

A+
n = {ei − ej : 1 ≤ i ≤ j ≤ n}

B+
n = {ei ± ej : 1 ≤ i ≤ j ≤ n} ∪ {ei : 1 ≤ i ≤ n}

C+
n = {ei ± ej : 1 ≤ i ≤ j ≤ n} ∪ {2ei : 1 ≤ i ≤ n}

D+
n = {ei ± ej : 1 ≤ i ≤ j ≤ n}
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TUTTE POLYNOMIALS OF CLASSICAL ROOT SYSTEMS

We can use this method to compute the Tutte polynomials of
An, Bn, Cn, Dn. Surprisingly, they come from the 2-variable
Rogers - Ramanujan function from analytic number theory:

∑
n≥0

zny(
n
2)

n!

Theorem. [Tutte 67 / A. 02] The Tutte polynomials χAn(x , y) of
the type A root systems are given by:∑

n≥0

zny(
n
2)

n!

x

= χA0
(x , y)

z0

0!
+ χA1

(x , y)
z1

1!
+ χA2

(x , y)
z2

2!
+ · · ·

Similar formulas hold for Bn,Cn, and Dn.
(More complicated, but also come from Rogers-Ramanujan function.)
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muchas gracias

For more information, see:

http://math.sfsu.edu/federico
http://tinyurl.com/ardilamatroids
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