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Abstract

There are many beautiful identities involving positive integers.

For example, Pythagoras knew 32 + 42 = 52 while Plato knew

33 + 43 + 53 = 63. Euler discovered 594 + 1584 = 1334 + 1344,

and even a famous story involving G. H. Hardy and Srinivasa

Ramanujan involves 13 + 123 = 93 + 103. But how does one find

such identities?

Around the third century, the Greek mathematician Diophantus
of Alexandria introduced a systematic study of integer solutions
to polynomial equations. In this session, we’ll focus on various
types of so-called Diophantine Equations, discussing such topics
as the Postage Stamp Problem, Pythagorean Triples, Pell’s
Equations, Elliptic Curves, the ABC Conjecture and Fermat’s
Last Theorem.
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What is the

Modern Math Worksop 2013?
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Hosting Mathematics Institutions

1 AIM: American Institute of Mathematics

2 IAS: Institute for Advanced Study

3 ICERM: Institute for Computational and Experimental Research in Math

4 IMA: Institute for Mathematics and its Applications

5 IPAM: Institute for Pure and Applied Mathematics

6 MBI: Mathematical Biosciences Institute

7 MSRI: Mathematical Sciences Research Institute

8 NIMBioS: National Institute for Mathematical and Biological Synthesis

9 SAMSI: Statistical and Applied Mathematical Sciences Institute
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Research Experiences for Undergraduate Faculty (June 4 – 8, 2012)

http://aimath.org/ARCC/workshops/reuf4.html
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Mathematical Sciences Research Institute Undergraduate Program
MSRI-UP 2010: Elliptic Curves and Applications
http://www.msri.org/web/msri/pages/137
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Mathematical Sciences Research Institute Undergraduate Program
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http://www.msri.org/web/msri/pages/137

2013 SACNAS National Conference A Survey of Diophantine Equations

http://www.msri.org/web/msri/pages/137


Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Pythagorean Triples
Pell’s Equation
Fermat’s Last Theorem and Beal’s Conjecture
Pythagorean Quadruples
The ABC Conjecture

Mathematical Sciences Research Institute Undergraduate Program

MSRI-UP 2014: Arithmetic Aspects of Elementary Functions

http://www.msri.org/msri_ups/735
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Goals of the Modern Math Workshop

As part of the Mathematical Sciences Collaborative Diversity Initiatives,
nine mathematics institutes will host their annual pre-conference event,
the 2013 Modern Math Workshop.

The Modern Math Workshop is intended to re-invigorate the focus of
mathematics students and faculty at minority-serving institutions and the
research careers of minority mathematicians.

On Day 1 (October 2), two minicourses geared towards an undergraduate
audience will run concurrently during the Modern Math Workshop.
Undergraduate applicants will select their minicouse of choice when they
register.

On both Days 1 and 2 (October 2 – 3), a series of eight talks geared
towards early career researchers will be given on exciting and current
research topics associated with the hosting institutes’ upcoming programs.
Each of the hosting institutes selected these speakers to represent them at
the Modern Math Workshop.
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Outline of Talk

1 Part I: 1:00 PM – 2:25 PM
Pythagorean Triples
Pell’s Equation
Fermat’s Last Theorem and Beal’s Conjecture
Pythagorean Quadruples
The ABC Conjecture

2 Break: 2:30 PM – 2:40 PM

3 Part II: 2:45 PM – 3:40 PM
Elliptic Integrals
Elliptic Curves
Heron Triangles
The ABC Conjecture
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Some Motivating Questions
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Pythagorean Triples

Motivating Question

What are some positive integers a, b, and c such that a2 + b2 = c2?
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Pythagorean Triples

32 + 42 = 52

62 + 82 = 102

52 + 122 = 132

82 + 152 = 172

122 + 162 = 202

72 + 242 = 252

102 + 242 = 262

202 + 212 = 292

162 + 302 = 342

Motivating Questions

Consider the equation a2 + b2 = c2.

1 What are some integer solutions (a, b, c)?

2 What are all integer solutions (a, b, c)?

Proposition

For any Pythagorean Triple (a, b, c), there exist integers m and n such that

a : b : c = 2mn : m
2 − n

2 : m
2 + n

2.
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Proof: Define the integers m and n by the relation

m

n
=

a

c − b
=⇒

a =
m

n
(c − b)

a
2 = c

2 − b
2

=⇒

a

c
=

2mn

m2 + n2

b

c
=

m2 − n2

m2 + n2

32 + 42 = 52

62 + 82 = 102

52 + 122 = 132

82 + 152 = 172

122 + 162 = 202

72 + 242 = 252

102 + 242 = 262

202 + 212 = 292

162 + 302 = 342

a b c m/n

3 4 5 3

6 8 10 3

5 12 13 5

a b c m/n

8 15 17 4

12 16 20 3

7 24 25 7

a b c m/n

10 24 26 5

20 21 29 5/2

16 30 34 4
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Geometric Interpretation

x =
a

c
=

2mn

m2 + n2

y =
b

c
=

m2 − n2

m2 + n2

=⇒ m

n
=

y + 1

x
=⇒

y = (m/n) x − 1

x
2 + y

2 = 1
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General Algorithm

Consider a quadratic equation

Aa
2 + B a b + C b

2 + D a c + E b c + F c
2 = 0

with fixed integer coefficients A, B, C , D , E , and F . We can express this as a
matrix product

1

2







a

b

c







T 





2A B D

B 2C E

D E 2F













a

b

c






= 0.

Motivating Questions

1 What are some integer solutions (a, b, c)?

2 What are all integer solutions (a, b, c)?
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Cover of the 1621 translation of Diophantus’ Arithmetica

http://en.wikipedia.org/wiki/Diophantus
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General Algorithm

Aa
2 + B a b + C b

2 + D a c + E b c + F c
2 = 0

Step #1: Find a solution (a0, b0, c0) with say c0 6= 0.

Step #2: Substitute

x =
a

c

y =
b

c

m

n
=

b c0 − b0 c

a c0 − a0 c

=⇒
y = (m/n) (x − x0) + y0

Ax
2 + B x y + C y

2 +D x + E y + F = 0

Step #3: Create a Taylor Series around (x0, y0):

x = x0 −
(2Ax0 + B y0 +D) n2 + (B x0 + 2C y0 + E)mn

A n2 + B mn + C m2

y = y0 −
(2Ax0 + B y0 +D)mn + (B x0 + 2C y0 + E)m2

An2 + B mn + C m2
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Conic Sections

Ax
2 + B x y + C y

2 + D x + E y + F = 0

1 B2 − 4AC = 0: Lines and Parabolas

2 B2 − 4AC < 0: Circles and Ellipses

3 B2 − 4AC > 0: Hyperbolas
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Conic Sections

Proposition

Given one rational point (x0, y0) on the conic section

Ax
2 + B x y + C y

2 + D x + E y + F = 0

then every rational point (x , y) is in the form

x = x0 −
(2Ax0 + B y0 + D)n2 + (B x0 + 2C y0 + E)mn

An2 + B m n + C m2

y = y0 − (2Ax0 + B y0 + D)mn + (B x0 + 2C y0 + E)m2

An2 + B mn + C m2

for some integers m and n.

Corollary

If there is one rational solution (x0, y0), then there are infinitely many rational
solutions (x , y).
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Examples

The circle x2 + y2 = 1 has a rational point (x0, y0) = (0,−1), so all
rational points are in the form

(x , y) =

(
2mn

m2 + n2
,
m2 − n2

m2 + n2

)

.

For any integer d , the curve x2 − d y2 = 1 has a rational point
(x0, y0) = (1, 0), so all rational points are in the form

(x , y) =

(
d m2 + n2

d m2 − n2
,

2mn

d m2 − n2

)

.
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Pell’s Equation

Motivating Questions

Fix an integer d that is not a square, and consider the equation x2 − d y2 = 1.

What are all rational solutions (x , y)?

What are all integral solutions (x , y)?

1657: Pierre de Fermat

1658: William Brouncker, John Wallis

1659: Johann Rahn, John Pell

1766: Leonhard Euler

1771: Joseph-Louis Lagrange

628 AD: Brahmagupta

1150 AD: Bhaskaracharya
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Example

For d = 2, we have the equation x2 − 2 y2 = 1.

There are infinitely many rational solutions:

y = (m/n) (x − 1)

x
2 − 2 y2 = 1

=⇒ (x , y) =

(
2m2 + n2

2m2 − n2
,

2mn

2m2 − n2

)

.

We can find a few integral solutions:

(x0, y0) = (1, 0)

(x1, y1) = (3, 2)

(x2, y2) = (17, 12)

(x3, y3) = (99, 70)

(x4, y4) = (577, 408)

=⇒ xn + yn
√
2 =

(

3 + 2
√
2
)n

.
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Proposition

Fix an integer d that is not a square, and consider the equation x2 − d y2 = 1.

There are infinitely many rational solutions (x , y).

There are infinitely many integral solutions if and only if d is positive.

Approach: Using the relation x2 − d y2 =
(

x + y
√
d
)(

x − y
√
d
)

, we

consider the ring

Z[
√
d ] =

{

x + y
√
d

∣
∣
∣
∣
x , y ∈ Z

}

.

We denote the norm of a = x + y
√
d as N a = x2 − d y2 as it has the property

N (a · b) = N a · N b. If δ = x1 + y1
√
d has N δ = 1, then so do the numbers

xn + yn
√
d = δn =

(
x1 + y1

√
d
)n
.
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Group Structure of Pell’s Equation

Proposition

Fix an integer d that is not a square, and consider the equation x2 − d y2 = 1.

We have a one-to-one correspondence
{

(x , y) ∈ Z× Z

∣
∣
∣
∣
x2 − d y2 = 1

}

−→ G =

{

a ∈ Z[
√
d ]

∣
∣
∣
∣
N a = 1

}

,

(x , y) 7→ a = x + y
√
d .

The collection of integer solutions (x , y) to x2 − d y2 = 1 forms a
commutative group. The group law is

(x1, y1)⊕ (x2, y2) = (x1 x2 + d y1 y2, x1 y2 + x2 y1)

with identity (1, 0) and inverse [−1](x , y) = (x ,−y).

Assuming G has an element δ′ > 1, there is a unique positive real number
δ = x1 + y1

√
d such that a = ±δn. That is, G ≃ Z2 × Z is generated by

−1 and δ.
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Proof: Choose a = x + y
√
d ∈ G . Consider the identities

a = x + y
√
d ,

a
−1 = x − y

√
d ,

−a = −x − y
√
d ,

−a
−1 = −x + y

√
d .

Without loss of generality, assume a ≥ 1. Let δ > 1 be that least such element
in G . Choose the positive integer n such that δn ≤ a < δn+1, and denote
b = a/δn ∈ G . By the minimality of δ we must have b = 1.

Corollary

Assume that we can find at least one solution (x1, y1) with x1 > 1. Then there
are infinitely many integer solutions to x2 − d y2 = 1.

Proof: Assuming δ = x1 + y1
√
d > 1 exists, write xn + yn

√
d = δn. Then

(xn, yn) =

(
δn + δ−n

2
,
δn − δ−n

2
√
d

)

=⇒ xn

yn
=

√
d

δ2n + 1

δ2n − 1
→

√
d .

Motivating Question

How do we construct δ = x1 + y1
√
d?

2013 SACNAS National Conference A Survey of Diophantine Equations



Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Pythagorean Triples
Pell’s Equation
Fermat’s Last Theorem and Beal’s Conjecture
Pythagorean Quadruples
The ABC Conjecture

Continued Fractions

Given a real number x , define the following sequence

x0 = x , xk+1 =
1

xk − ⌊xk⌋
for k = 0, 1, 2, . . . .

Denote ak = ⌊xk⌋ as integers. We have the expression

x = a0 +
1

x1
= a0 +

1

a1 +
1

x2

= · · · = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

Denote the nth convergent as the rational number

{a0; a1, a2, . . . , an−1} = a0 +
1

a1 +
1

a2 +
1

· · ·+ an−1

=
pn

qn
.
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Example

Consider x =
√
2. Recall that we define

x0 = x , xk+1 =
1

xk − ⌊xk⌋
, and ak = ⌊xk⌋.

We find the specific numbers

x0 =
√
2, x1 =

1√
2− 1

= 1 +
√
2, x2 =

1

(1 +
√
2)− 2

= 1 +
√
2.

Then a0 = 1 while a1 = a2 = · · · = 2. We have the expression

√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·

.
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The Fundamental Solution

Theorem (Joseph-Louis Lagrange, 1771)

Fix a positive integer d which is not a square.

√
d = {a0; a1, . . . , ah−1, 2 a0}, where the overline denotes that h terms

repeat indefinitely.

If we consider the hth convergent, say {a0; a1, . . . , ah−1} = ph/qh, then

p
2
h − d q

2
h = (−1)h.

Every integral solution (x , y) to x2 − d y2 = 1 can be expressed as
x + y

√
d = ±δn, where

δ =







ph + qh
√
d if h is even,

p2h + q2h
√
d =

(

ph + qh
√
d
)2

if h is odd.
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Example

Consider d = 2. The continued fraction is
√
2 =

{
1; 2

}

which has h = 1.

Consider the convergent

p1

q1
= {1} =

1

1
=⇒ p

2
11 − 2 q2

11 = −1.

On the other hand,
p2

q2
= {1; 2} = 1 +

1

2
=

3

2
.

The fundamental solution is δ = 3 + 2
√
2 =

(

1 +
√
2
)2

, so every integral

solution (x , y) to x2 − 2 y2 = 1 satisfies

x + y
√
2 = ±

(
3 + 2

√
2
)n
.
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Example

Consider d = 61. The continued fraction is
√
61 =

{
7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14

}

which has h = 11.

Consider the convergent

p11

q11
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

29718

3805
=⇒ p

2
11 − 61 q2

11 = −1.

On the other hand,

p22

q22
= {7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1} =

1766319049

226153980
.

The fundamental solution is

δ = 1766319049 + 226153980
√
61 =

(

29718 + 3805
√
61

)2

, so every integral

solution (x , y) to x2 − 61 y2 = 1 satisfies

x + y
√
61 = ±

(
1766319049 + 226153980

√
61

)n
.
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Can we generalize?
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Fermat’s Last Theorem and Generalizations

Let m, n, and k be positive integers. We generalize a2 + b2 = c2 to the
equation

a
m + b

n = c
k .

Theorem (Pierre de Fermat, 1637; Andrew Wiles, 1994)

When m = n = k ≥ 3, the only integral solutions (a,b, c) to an + bn = cn must
satisfy a b c = 0.

Conjecture (Andrew Beal, Robert Tijdeman, Don Bernard Zagier)

When m, n, k ≥ 3 the integral solutions (a,b, c) have a factor in common,
that is, gcd(a,b, c) ≥ 2.

102 + (−7)3 = (−3)5

132 + 73 = 29

32 + (−2)3 = 1k

33 + 63 = 35

1623 + 274 = 314

76 + 77 = 983
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http://dessindenfants.wordpress.com
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Pythagorean Quadruples

We say that (a, b, c, d) is a Pythagorean quadruple if a, b, c, and d are
nonzero integers such that a2 + b2 + c2 = d2.

12 + 22 + 22 = 32

22 + 32 + 62 = 72

12 + 42 + 82 = 42 + 42 + 72 = 92

22 + 62 + 92 = 62 + 62 + 72 = 112

32 + 42 + 122 = 132

22 + 52 + 142 = 22 + 102 + 112 = 152

12 + 122 + 122 = 82 + 92 + 122 = 172

12 + 62 + 182 = 62 + 62 + 172 = 62 + 102 + 152 = 192

Motivating Questions

What are some integer solutions (a, b, c, d)?

What are all integer solutions (a, b, c, d)?
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Pythagorean Quadruples

Theorem

If (a, b, c, d) is a tuple of integers such that a2 + b2 + c2 = d2, then there exist
integers m, n, and p such that

a : b : c : d = 2mn : 2mp : m
2 − n

2 − p
2 : m

2 + n
2 + p

2.

Proof: The proof is similar to that for the triples. First assume that (a,b, c, d)
is a Pythagorean quadruple. Let m, n, and p be integers such that

a+ i b

d + c
=

n + i p

m
and a

2 + b
2 + c

2 = d
2.

We find that

a

d
=

2mn

m2 + n2 + p2
,

b

d
=

2mp

m2 + n2 + p2
, and

c

d
=

m2 − n2 − p2

m2 + n2 + p2
.
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Parametrizations?

Several types of families can be derived from these parametrizations.

One obvious family is

a = 2mnq,

b = 2mp q,

c = (m2 − n
2 − p

2) q,

d = (m2 + n
2 + p

2) q;

Other Pythagorean quadruples are in the form

a = 2αβ + 2 γ δ,

b = 2αγ − 2β δ,

c = α2 − β2 − γ2 + δ2,

d = α2 + β2 + γ2 + δ2;

These formulas may look different, but they are related by setting

m = α2 + δ2, n = αβ + γ δ, p = αγ − β δ q =
1

α2 + δ2
.

For example, consider the quadruple (36, 8, 3, 37).

α = 2, β = 1, γ = 4, δ = 4; m = 10, n = 9, p = 2, q =
1

5
.

These two families do not exhaust all possibilities of Pythagorean
quadruples!
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What about these

Parametrizations?
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Mason-Stothers Theorem

Theorem (W. W. Stothers, 1981; R. C. Mason, 1983)

Denote n(AB C) as the number distinct zeroes of the product of relatively

prime polynomials A(t), B(t), and C(t) satisfying A+ B = C. Then

max
{
deg(A), deg(B), deg(C)

}
≤ n(AB C)− 1.

Proof: We follow Lang’s “Algebra”. Explicitly write

A(t) = A0

a∏

i=1

(t − αi )
pi deg(A) =

a∑

i=1

pi

B(t) = B0

b∏

j=1

(t − βj )
qj deg(B) =

b∑

j=1

qj

C(t) = C0

c∏

k=1

(t − γk)
rk deg(C) =

c∑

k=1

rk

rad
(
ABC

)
(t) =

a∏

i=1

(t − αi)
b∏

j=1

(t − βj )
c∏

k=1

(t − γk) n(ABC) = a + b + c
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F (t) =
A(t)

C(t)

G(t) =
B(t)

C(t)







=⇒ −B(t)

A(t)
=

F ′(t)

F (t)

G ′(t)

G(t)

=

a∑

i=1

pi

t − αi

−
c∑

i=k

rk

t − γk

b∑

j=1

qj

t − βj

−
c∑

k=1

rk

t − γk

Clearing, we find polynomials of degrees max
{
deg(A), deg(B)

}
≤ n − 1:

rad
(
ABC

)
(t) · F

′(t)

F (t)
=

a∑

i=1

pi
∏

e 6=i

(t − αe)

b∏

j=1

(t − βj )

c∏

k=1

(t − γk)

−
c∑

k=1

rk

a∏

i=1

(t − αi )

b∏

j=1

(t − βj )
∏

e 6=k

(t − γe)

rad
(
ABC

)
(t) · G

′(t)

G(t)
=

b∑

j=1

qj

a∏

i=1

(t − αi )
∏

e 6=j

(t − βe)
c∏

k=1

(t − γk)

−
c∑

k=1

rk

a∏

i=1

(t − αi )
b∏

j=1

(t − βj )
∏

e 6=k

(t − γe)
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Examples

The Mason-Stothers Theorem is sharp. Here is a list of relatively prime
polynomials such that A(t) + B(t) = C(t) and

max
{
deg(A), deg(B), deg(C)

}
= n(AB C)− 1.

A(t) B(t) C(t) n

(

2 t
)2 (

t2 − 1
)2 (

t2 + 1
)2

5

8 t
(

t2 + 1
) (

t − 1
)4 (

t + 1
)4

16 t
(

t + 1
)3 (

t − 3
) (

t + 3
) (

t − 1
)3

5

16 t3
(

t + 1
) (

t − 3
)3 (

t + 3
)3 (

t − 1
)

(

2 t
)4 (

t4 − 6 t2 + 1
) (

t2 + 1
)2 (

t2 − 1
)4

9

16 t
(

t2 − 1
) (

t2 + 1
)2 (

t2 − 2 t − 1
)4 (

t2 + 2 t − 1
)4
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Restatement of Theorem

The polynomial ring Q[t] has an absolute value

| · | : Q[t] → Z≥0 defined by
∣
∣A(t)

∣
∣ =

{

0 if A(t) ≡ 0,

2deg(A) otherwise.

It has the following properties:

Multiplicativity: |A · B| = |A| · |B|
Non-degeneracy: |A| = 0 iff A = 0; |A| = 1 iff A(t) = A0 is a unit.

Ordering: |A| ≤ |B| iff deg(A) ≤ deg(B).

Corollary

For each ǫ > 0 there exists a uniform Cǫ > 0 such that the following holds: For
any relatively prime polynomials A, B, C ∈ Q[t] with A+ B = C ,

max
{
|A|, |B|, |C |

}
≤ Cǫ

∣
∣rad(AB C)

∣
∣1+ǫ

.

Proof: Using Mason-Stothers, we may choose Cǫ = 1/2.
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Multiplicative Dedekind-Hasse Norms

Let R be a Principal Ideal Domain with quotient field K :

Q[t] in Q(t) with primes t − α.

Z in Q with primes p.

Define rad(a) of an ideal a is the intersection of primes p containing it:

rad(A) =
∏

i
(t − αi ) for A(t) = A0

∏

i
(t − αi )

ei in Q[t].

rad(A) =
∏

i pi for A =
∏

i p
ei
i in Z.

Theorem (Richard Dedekind; Helmut Hasse)

R is a Principal Ideal Domain if and only if there exists an absolute value

| · | : R → Z≥0 with the following properties:

Multiplicativity: |A · B| = |A| · |B|
Non-degeneracy: |A| = 0 iff A = 0; |A| = 1 iff A is a unit.

Ordering: |A| ≤ |B| if A divides B.

We may define |a| = |A| as a = AR. Hence |rad(a)| ≤ |a| as rad(a) ⊆ a.
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ABC Conjecture

Conjecture (David Masser, 1985; Joseph Oesterlé, 1985)

For each ǫ > 0 there exists a uniform Cǫ > 0 such that the following holds: For
any relatively prime integers A, B, C ∈ Z with A+ B = C ,

max
{
|A|, |B|, |C |

}
≤ Cǫ

∣
∣rad(AB C)

∣
∣1+ǫ

.

Lemma

The symmetric group on three letters acts on the set of ABC Triples:

σ :





A

B

C



 7→





B

−C

−A



 , τ :





A

B

C



 7→





B

A

C



 where
σ3 = 1
τ 2 = 1

τ ◦ σ ◦ τ = σ2

In particular, we may assume 0 < A ≤ B < C .
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Quality of ABC Triples

Corollary

If the ABC Conjecture holds, then lim sup q(A,B,C) ≤ 1 for the quality

q(A,B,C) =
max

{
ln |A|, ln |B|, ln |C |

}

ln
∣
∣rad(AB C)

∣
∣

.

Proof: Say ǫ =
(
lim sup q(P)− 1

)
/3 is positive. Choose a sequence

Pk = (Ak ,Bk ,Ck) with q(Pk) ≥ 1 + 2 ǫ. But this must be finite because

max
{
|Ak |, |Bk |, |Ck |

}
≤ Cǫ

∣
∣rad(AkBkCk )

∣
∣1+ǫ ≤ exp

[
q(Pk)

q(Pk)− 1− ǫ
ln Cǫ

]

.

Question

For each ǫ > 0, there are only finitely many ABC Triples P = (A,B,C) with
q(P) ≥ 1 + ǫ. What is the largest q(P) can be?
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Exceptional Quality

Proposition (Bart de Smit, 2010)

There are only 233 known ABC Triples P = (A,B,C) with q(P) ≥ 1.4.

Rank A B C q(A,B,C)

1 2 310 · 109 235 1.6299
2 112 32 · 56 · 73 221 · 23 1.6260
3 19 · 1307 7 · 292 · 318 28 · 322 · 54 1.6235
4 283 511 · 132 28 · 38 · 173 1.5808
5 1 2 · 37 54 · 7 1.5679
6 73 310 211 · 29 1.5471
7 72 · 412 · 3113 1116 · 132 · 79 2 · 33 · 523 · 953 1.5444
8 53 29 · 317 · 132 115 · 17 · 313 · 137 1.5367
9 13 · 196 230 · 5 313 · 112 · 31 1.5270
10 318 · 23 · 2269 173 · 29 · 318 210 · 52 · 715 1.5222

http://www.math.leidenuniv.nl/~desmit/abc/index.php?set=2
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ABC Conjecture Home Page
http://www.math.unicaen.fr/~nitaj/abc.html
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ABC at Home
http://abcathome.com/
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Frey’s Observation

Theorem (Gerhard Frey, 1989)

Let P = (A,B,C) be an ABC Triple, that is, a triple of relatively prime

integers such that A+ B = C. Then the corresponding curve

EA,B,C : y
2 = x (x − A) (x + B)

has “remarkable properties.”

Question

How do you explain this to undergraduates?

Answer: You don’t!
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Can you find a right triangle

with rational sides

having area A = 6?
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Consider positive rational numbers a, b, and c satisfying

a
2 + b

2 = c
2 and

1

2
a b = 6.

Recall the (a,b, c) = (3, 4, 5) triangle.
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Cubic Equations

Are there more rational solutions (a, b, c) to

a
2 + b

2 = c
2 and

1

2
a b = 6?

Proposition

Let x and y be rational numbers, and denote the rational numbers

a =
x2 − 36

y
, b =

12 x

y
, and c =

x2 + 36

y
.

Then

a
2 + b

2 = c
2

1

2
a b = 6






if and only if

{

y
2 = x

3 − 36 x .

Example: (x , y) = (12, 36) corresponds to (a, b, c) = (3, 4, 5).

Can we find infinitely many rational solutions (a,b, c)?
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What types of properties

does do these

cubic equations have?
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Thank You!

Questions?
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Break

2:30 PM – 2:40 PM

SACNAS National Convention

Room 212

Henry B. Gonzalez Convention Center
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Modern Math Workshop

Undergraduate Mini-Course #2: Part II

2:45 PM – 3:40 PM

SACNAS National Convention

Room 210B

Henry B. Gonzalez Convention Center
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Elliptic Curves
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Simple Pendulum

Question

Say we have a mass m attached to a rigid rod of length ℓ that is allowed to
swing back and forth at one end. What is the period of the oscillation given an
initial angle θ0?

In 1602, the Italian physicist Galileo Galilei believed that its period was
independent of of the initial angle θ0 and began a series of experiments to
determine whether this observation was correct.
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Period: Approximate Value

Theorem (Galileo Galilei, 1602)

Period = 2π

√

ℓ

g

where g = 9.81 m/sec2 = 32.17 ft/sec2 is gravitational acceleration.

For example, the pendulum in a Grandfather clock is around ℓ = 1 m = 3.28 ft
in length because the pendulum has period

Period = 2π

√

ℓ

g
= 2 · 3.14 ·

√

3.28

32.17
sec = 2 sec.

Question

Unfortunately this formula is only an approximation assuming the initial angle
θ0 is small. What happens as θ0 → π?
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Period: True Value

Theorem

The period of a pendulum with mass m, length ℓ, and initial angle θ0 is

Period = 4

√

ℓ

g

∫ π/2

0

dφ
√

1− k2 sin2 φ
where k = sin

θ0
2
.

If θ0 ≈ 0 then k ≈ 0 as well, so that the integral has the value π/2. We recover
Galileo’s original formula in this limiting approximation.

Period ≈ 4

√

ℓ

g
· π
2
= 2 π

√

ℓ

g
.

The formula above works for all angles θ0. Why?
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Proof of Period Formula

The energy of an oscillating system such as a pendulum must be conserved, so
the kinetic plus potential energy must be a constant.

Kinetic + Potential =
1

2
m

(

ℓ
dθ

dt

)2

+mg ℓ (1− cos θ)

In particular, the energy is all kinetic when θ = 0 and it is all potential when
θ = ±θ0 (i.e., dθ

dt
= 0).

Lemma

Energy =
1

2
m

(

ℓ
dθ

dt

)2

+mg ℓ (1− cos θ) = m g ℓ (1− cos θ0) .

To compute the period of this pendulum, we integrate the differential dt with
respect to time over one complete oscillation.

dθ

dt
=

√

2
g

ℓ
(cos θ − cos θ0) =⇒ dt =

√

ℓ

g

dθ
√

2 (cos θ − cos θ0)
.
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Proof of Period Formula

We’ll simplify this expression a bit.

φ = arcsin
sin θ

2

sin θ0
2

=⇒ dθ
√

2 (cos θ − cos θ0)
=

dφ
√

1− sin2 θ0
2

sin2 φ

The period of the simple pendulum is

Period =

∫

One Oscillation

dt = 2

√

ℓ

g

∫ θ0

−θ0

dθ
√

2 (cos θ − cos θ0)

= 4

√

ℓ

g
· K

(

sin
θ0
2

)

in terms of the elliptic integral:

K(k) =

∫ π/2

0

dφ
√

1− k2 sin2 φ
=

∫ 1

0

dt
√

(1− t2) (1− k2 t2)
, |k | < 1.
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Limiting Values

As θ0 → π, the value k = sin θ0
2
→ 1. Then K(k) → ∞. Hence the

becomes infinitely long because the pendulum hangs at the top.

As θ0 → 0, the value k = sin θ0
2
→ 0. Expand K(k) in a Taylor series

around k = 0:

K(k) =
π

2
+

π

8
k
2 +

9π

128
k
4 + · · · for k small.

Hence the period of a pendulum has the approximate value

Period = 2π

√

ℓ

g

(

1 +
1

4
sin2 θ0

2
+ · · ·

)

for θ0 small.
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Where else do we see

Elliptic Integrals?
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Arc Length of Circle

Theorem

Consider the circle x2 + y2 = r2. The arc length is given by the integral

z =

∫ 2π

0

r dθ = 2π r .

In general, the arc length from P to Q on a curve f (x , y) = 0 is given by the
integral

z =

∫ Q

P

√

1 +

(
dy

dx

)2

dx where
dy

dx
= −

∂f

∂x
∂f

∂y

.

We will use polar coordinates by setting x = r cos θ and y = r sin θ:

dz =

√

1 +

(
dy

dx

)2

dx =
√

(dx)2 + (dy)2 =

√

r2 +

(
dr

dθ

)2

dθ.
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Arc Length of an Ellipse

Consider the ellipse x2/a2 + y2/b2 = 1 with 0 < a ≤ b. We set x = r cos θ and

y = r sin θ so that r =
a b

√

b2 cos2 θ + a2 sin2 θ
:

-2.4 -1.6 -0.8 0 0.8 1.6 2.4

-1.6

-0.8

0.8
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(x,y)

r
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Arc Length of an Ellipse

We have the differential

dz =

√

r2 +

(
dr

dθ

)2

dθ = a

√

1− k2 t2

1− t2
dt, t = sin θ.

Theorem

The arc length of the ellipse is

z = 4

∫ π/2

0

√

r2 +

(
dr

dθ

)2

dθ = 4 a E(k), k =

√
b2 − a2

b
;

in terms of the elliptic integral

E(k) =

∫ 1

0

√

1− k2 t2

1− t2
dt, k 6= ±1.

Here k is the eccentricity of the ellipse. For a circle, k = 0.
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Lemniscate

Now consider the curve
(
x2 + y2

)2
= a2

(
x2 − y2

)
.
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In 1694, Swiss mathematician Jakob Bernoulli called this curve Lemniscus or
“Pendant Ribbon.”

Question

What is the arc length of this curve?
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Arc Length of Lemniscate

We set x = r cos θ and y = r sin θ:

(

x
2 + y

2
)2

= a
2
(

x
2 − y

2
)

=⇒ r
2 = a

2 cos 2θ.

We also evaluate

dz =

√

r2 +

(
dr

dθ

)2

dθ = a
dt√
1− t4

, t =
r

a
=

√
cos 2θ.

Theorem

The complete arc length of the lemniscate is

z = 4

∫ π/4

0

√

r2 +

(
dr

dθ

)2

dθ = 4 a

∫ 1

0

dt√
1− t4

= 4 aK(
√
−1).

This integral cannot be evaluated in terms of elementary functions.
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Are there

any other applications of

Elliptic Integrals?
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Fagnano’s Duplication Formula

In 1750, Italian mathematician Giulio Fagnano considered the incomplete
elliptic integral

z(w) =

∫ w

0

dt√
1− t4

.

Theorem

z(W ) = 2 · z(w) when W =
2w

√
1− w4

1 + w4
.

Equivalently, if w = w(z) is the inverse of z = z(w), then

w(2 z) =
2w(z)w ′(z)

1 + w(z)4
where (w ′)2 = 1− w

4.

Question

Are there more formulas like this one?
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x
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(

x
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2
)
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r

(

x
2 + y

2
)2

= a
2
(

x
2 − y

2
)
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Euler’s Addition Formula

In 1751, Swiss mathematician Leonhard Euler, while reading through
Fagnano’s work, considered the integral for a fixed modulus k

z(w) =

∫ w

0

dt
√

(1− t2) (1− k2 t2)
.

Theorem

z(W ) = z(w1)± z(w2) where

W =
w1

√

(1− w2
2 ) (1− k2 w2

2 )± w2

√

(1− w2
1 ) (1− k2 w2

1 )

1− k2 w2
1 w

2
2

.

Equivalently, if w = w(z) is the inverse of z = z(w) then

w(z1 ± z2) =
w(z1)w

′(z2)± w ′(z1)w(z2)

1− k2 w(z1)2 w(z2)2
.

where (w ′)2 =
(
1− w2

) (
1− k2 w2

)
.
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Corollaries

As k →
√
−1 we find the integral studied by Fagnano:

z(w) =

∫ w

0

dt
√

(1− t2) (1 + t2)
=

∫ w

0

dt√
1− t4

.

Corollary

z(W ) = z(w1)± z(w2) where W =
w1

√

1− w4
2 ± w2

√

1− w4
1

1 + w2
1 w

2
2

.

As k → 0 we find the trigonometric functions:

z(w) =

∫ w

0

dt√
1− t2

= arcsinw =⇒
{

w(z) = sin z

w
′(z) = cos z

Corollary

sin(z1 ± z2) = sin(z1) cos(z2)± cos(z1) sin(z2).

For arbitrary k , the function w(z) = sn(z) is a Jacobi elliptic function.
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Proof of Addition Formula

z(w) =

∫ w

0

dt
√

(1− t2) (1− k2 t2)

⇐⇒ dz(w) =
dw

√
(1− w2) (1− k2 w2)

and z(0) = 0.

Hence (w ′)2 =
(
1− w2

) (
1− k2 w2

)
. Using the Chain Rule,

dz(W ) =

∂W
∂w1

√

(1−W 2) (1−k2 W 2)

(1−w2
1 ) (1−k2 w2

1 )

︸ ︷︷ ︸

c1

dz(w1) +

∂W
∂w2

√

(1−W 2) (1−k2 W 2)

(1−w2
2 ) (1−k2 w2

2 )

︸ ︷︷ ︸

c2

dz(w2)

To conclude z(W ) = z(w1) + z(w2) it suffices to show c1 = c2 = 1. We use
this to define W = W (w1, w2).
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Parametrization of Quartic Curves

Fix a complex number k , and define a function w = w(z) implicitly by

z =

∫ w(z)

0

dt
√

(1− t2) (1− k2 t2)
⇐⇒ w(z) = sn(z).

Theorem

The point (x , y) =
(
sn(z), sn′(z)

)
satisfies y2 =

(
1− x2

) (
1− k2 x2

)
.
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Elliptic Functions and Elliptic Integrals

Unfortunately, the map w = sn(z) is not well-defined because the integrand
has poles at t = ±1, ±1/k . We make branch cuts then integrate in closed
loops around them:

ω1 = 2

∫ 1/k

−1/k

dt
√

(1− t2) (1− k2 t2)
=

4

k
K

(
1

k

)

,

ω2 = 2

∫ 1

−1

dt
√

(1− t2) (1− k2 t2)
= 4K(k)

in terms of the complete elliptic integral of the first kind

K(k) =

∫ 1

0

dt
√

(1− t2) (1− k2 t2)
, k 6= −1, 0, 1.

Theorem

The Jacobi elliptic function sn : C/Λ → C is well-defined for the lattice
Λ = {mω1 + n ω2 |m, n ∈ Z}.
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Parametrization of Cubic Curves

Fix a complex number k 6= −1, 0, 1.

We will consider the torus C/Λ as defined in terms of the lattice

Λ =

{

m · 1
k
K

(
1

k

)

+ n · K(k)

∣
∣
∣
∣
m, n ∈ Z

}

.

The map z 7→ (x , y) =
(
sn(z), sn′(z)

)
gives a correspondence with

y
2 =

(

1− x
2
)(

1− k
2
x
2
)

.

The map

(x , y) 7→ (X ,Y ) =

(
3 (5 k2 − 1) x + 3 (k2 − 5)

x − 1
,
54 (1− k2) y

(x − 1)2

)

gives a one-to-one correspondence with the cubic curve

Y
2 = X

3 + AX + B where







A = −27
(

k
4 + 14 k2 + 1

)

B = −54
(

k
6 − 33 k4 − 33 k2 + 1

)
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Example

When k =
√
−1:

The complete elliptic integrals have the values

ω1 = −4
√
−1K(

√
−1)

ω2 = +4K(
√
−1)

}

where K(
√
−1) =

∫ 1

0

dt√
1− t4

;

so that Λ ≃ Z[
√
−1] is just the Gaussian integers.

The quotient C/Z[
√
−1] is equivalent to the quartic curve

y
2 = 1− x

4.

The quartic curve is equivalent to the cubic curve

Y
2 = X

3 + 4X .
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Elliptic Curves

More generally, we consider cubic curves

E : Y
2 = X

3 + AX + B

where the rational numbers A and B satisfy 4A3 + 27B2 6= 0.

Given a field K such as either Q, R, or C, denote

E(K) =

{

(X ,Y ) ∈ K × K

∣
∣
∣
∣
Y

2 = X
3 + AX + B

}

∪ {O}.

Here O is the “point at infinity” coming from (x , y) = (1, 0).
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Why do people care about

Elliptic Curves?
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Can you find a right triangle

with rational sides

having area A = 6?
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Motivating Question

Consider positive rational numbers a, b, and c satisfying

a
2 + b

2 = c
2 and

1

2
a b = 6.

Recall the (a,b, c) = (3, 4, 5) triangle.
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Cubic Equations

Are there more rational solutions (a, b, c) to

a
2 + b

2 = c
2 and

1

2
a b = 6?

Proposition

Let x and y be rational numbers, and denote the rational numbers

a =
x2 − 36

y
, b =

12 x

y
, and c =

x2 + 36

y
.

Then

a
2 + b

2 = c
2

1

2
a b = 6






if and only if

{

y
2 = x

3 − 36 x .

Example: (x , y) = (12, 36) corresponds to (a, b, c) = (3, 4, 5).

Can we find infinitely many rational solutions (a,b, c)?
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What types of properties

does this

cubic equation have?
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What is an Elliptic Curve?

Definition

Let A and B be rational numbers such that 4A3 + 27B2 6= 0. An elliptic
curve E is the set of all (x , y) satisfying the equation

y
2 = x

3 + Ax + B.
We will also include the “point at infinity” O.

Example: y2 = x3 − 36 x is an elliptic curve.

Non-Example: y2 = x3 − 3 x + 2 is not an elliptic curve.
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What is an Elliptic Curve?

Formally, an elliptic curve E over Q is a nonsingular projective curve of genus
1 possessing a Q-rational point O.

Such a curve is birationally equivalent over Q to a cubic equation in
Weierstrass form:

E : y
2 = x

3 + Ax + B;

with rational coefficients A and B, and nonzero discriminant
∆(E) = −16

(
4A3 + 27B2

)
.

For any field K , define

E(K) =

{

(x1 : x2 : x0) ∈ P
2(K)

∣
∣
∣
∣
x
2
2 x0 = x

3
1 + Ax1 x

2
0 + B x

3
0

}

;

where O = (0 : 1 : 0) is on the projective line at infinity x0 = 0.

Remark: In practice we choose either K = Q or Fp.
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Chord-Tangent Method

Given two rational points on an elliptic curve E , we explain how to construct
more.

1 Start with two rational points P and Q.

2 Draw a line through P and Q.

3 The intersection, denoted by P ∗ Q, is another rational point on E .
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Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

P ∗ Q = (18, 72)
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Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

P ∗ P = O
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Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

Q ∗Q = (25/4, 35/8)
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Group Law

Definition

Let E be an elliptic curve defined over a field K , and denote E(K) as the set of
K -rational points on E . Define the operation ⊕ as

P ⊕ Q = (P ∗Q) ∗ O.
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Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

P ⊕Q = (18,−72)

2013 SACNAS National Conference A Survey of Diophantine Equations



Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Elliptic Integrals
Elliptic Curves
Heron Triangles
The ABC Conjecture

Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

P ⊕ P = O
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Example: y2 = x3 − 36 x

Consider the two rational points

P = (6, 0) and Q = (12, 36).

Q ⊕ Q = (25/4,−35/8)
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Poincaré’s Theorem

Theorem (Henri Poincaré, 1901)

Let E be an elliptic curve defined over a field K. Then E(K) is an abelian

group under ⊕.

Recall that to be an abelian group, the following five axioms must be satisfied:

Closure: If P, Q ∈ E(K) then P ⊕Q ∈ E(K).

Associativity: (P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R).

Commutativity: P ⊕Q = Q ⊕ P.

Identity: P ⊕O = P for all P.

Inverses: [−1]P = P ∗ O satisfies P ⊕ [−1]P = O.
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What types of properties

does this

abelian group have?
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Poincaré’s Conjecture

Conjecture (Henri Poincaré, 1901)

Let E be an elliptic curve. Then E(Q) is finitely generated.

Recall that an abelian group G is said to be finitely generated if there exists a
finite generating set {a1, a2, . . . , an} such that, for each given g ∈ G , there
are integers m1, m2, . . . , mn such that

g = [m1]a1 ◦ [m2]a2 ◦ · · · ◦ [mn]an.

Example: G = Z is a finitely generated abelian group because all integers are
generated by a1 = 1.

Example: For a positive integer d which is not a square, the set

G =
{

(x , y) ∈ Z× Z
∣
∣ x

2 − d y
2 = 1

}

≃ Z2 × Z

is a finitely generated abelian group because all integral solutions g = (x , y) are
generated by a1 = −1 and the fundamental solution a2 = (x1, y1).
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Mordell’s Theorem

Theorem (Louis Mordell, 1922)

Let E be an elliptic curve. Then E(Q) is finitely generated.

That is, there exists a finite group E(Q)tors and a nonnegative integer r such

that

E(Q) ≃ E(Q)tors × Z
r .

The set E(Q) is called the Mordell-Weil group of E .

The finite set E(Q)tors is called the torsion subgroup of E . It contains all
of the points of finite order, i.e., those P ∈ E(Q) such that

[m]P = O for some positive integer m.

The nonnegative integer r is called the Mordell-Weil rank of E .
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Example: y2 = x3 − 36 x

Consider the three rational points

P1 = (0, 0), P2 = (6, 0), and P3 = (12, 36).

[2]P1 = [2]P2 = O, i.e., both P1 and P2 have order 2. They are torsion.

E(Q)tors = 〈P1, P2〉 ≃ Z2 × Z2
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Example: y2 = x3 − 36 x

Consider the three rational points

P1 = (0, 0), P2 = (6, 0), and P3 = (12, 36).

[2]P3 = (25/4,−35/8) and [3]P3 = (16428/529,−2065932/12167).

E(Q) = 〈P1, P2, P3〉 ≃ Z2 × Z2 × Z
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Classification of Torsion Subgroups

Theorem (Barry Mazur, 1977)

Let E is an elliptic curve, then

E(Q)tors ≃
{

Zn where 1 ≤ n ≤ 10 or n = 12;

Z2 × Z2m where 1 ≤ m ≤ 4.

Remark: Zn denotes the cyclic group of order n.

Example: The elliptic curve y2 = x3 − 36 x has torsion subgroup
E(Q)tors ≃ Z2 × Z2 generated by P1 = (0, 0) and P2 = (6, 0).

Mordell’s Theorem states that

E(Q) ≃ E(Q)tors × Z
r .

What can we say about the Mordell-Weil rank r?
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Records for Prescribed Torsion and Rank

E(Q)tors Highest Known Rank r Found By year Discovered

Trivial 28 Elkies 2006

Z2 19 Elkies 2009

Z3 13 Eroshkin 2007, 2008, 2009

Z4 12 Elkies 2006

Z5 8
Dujella, Lecacheux

Eroshkin
2009
2009

Z6 8

Eroshkin
Dujella, Eroshkin

Elkies
Dujella

2008
2008
2008
2008

Z7 5

Dujella, Kulesz
Elkies

Eroshkin
Dujella, Lecacheux
Dujella, Eroshkin

2001
2006
2009
2009
2009

Z8 6 Elkies 2006

Z9 4 Fisher 2009

Z10 4
Dujella
Elkies

2005, 2008
2006

Z12 4 Fisher 2008

Z2 × Z2 15 Elkies 2009

Z2 × Z4 8
Elkies

Eroshkin
Dujella, Eroshkin

2005
2008
2008

Z2 × Z6 6 Elkies 2006

Z2 × Z8 3

Connell
Dujella

Campbell, Goins
Rathbun

Flores, Jones, Rollick, Weigandt, Rathbun
Fisher

2000
2000, 2001, 2006, 2008

2003
2003, 2006

2007
2009

http://web.math.hr/~duje/tors/tors.html
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How does this

help answer

the motivating questions?
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Rational Triangles Revisited

Can we find infinitely many right triangles (a, b, c) having rational sides and
area A = 6?

Proposition

Let x and y be rational numbers, and denote the rational numbers

a =
x2 − 36

y
, b =

12 x

y
, and c =

x2 + 36

y
.

Then

a
2 + b

2 = c
2

1

2
a b = 6






if and only if

{

y
2 = x

3 − 36 x .

Example: (x , y) = (12, 36) corresponds to (a, b, c) = (3, 4, 5).
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Rational Triangles Revisited

The elliptic curve E : y2 = x3 − 36 x has Mordell-Weil group

E(Q) = 〈P1, P2, P3〉 ≃ Z2 × Z2 × Z

as generated by the rational points

P1 = (0, 0), P2 = (6, 0), and P3 = (12, 36).

P3 is not a torsion element, so we find triangles for each [m]P3:

[1]P3 = (12, 36) =⇒ (a, b, c) = (3, 4, 5)

[−2]P3 =

(

25

4
,

35

8

)

=⇒ (a, b, c) =

(

49

70
,

1200

70
,

1201

70

)

[−3]P3 =

(

16428

529
,

2065932

12167

)

=⇒ (a, b, c) =

(

7216803

1319901
,

2896804

1319901
,

7776485

1319901

)

There are infinitely many rational right triangles with area A = 6!
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Are the torsion subgroups

useful for anything?
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ABC Conjecture

Conjecture (David Masser, 1985; Joseph Oesterlé, 1985)

For each ǫ > 0 there exists a uniform Cǫ > 0 such that the following holds: For
any relatively prime integers A, B, C ∈ Z with A+ B = C ,

max
{
|A|, |B|, |C |

}
≤ Cǫ

∣
∣rad(AB C)

∣
∣1+ǫ

.

Lemma

The symmetric group on three letters acts on the set of ABC Triples:

σ :





A

B

C



 7→





B

−C

−A



 , τ :





A

B

C



 7→





B

A

C



 where
σ3 = 1
τ 2 = 1

τ ◦ σ ◦ τ = σ2

In particular, we may assume 0 < A ≤ B < C .
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Frey’s Observation

Theorem (Gerhard Frey, 1989)

Let P = (A,B,C) be an ABC Triple, that is, a triple of relatively prime

integers such that A+ B = C. Then the corresponding curve

EA,B,C : y
2 = x (x − A) (x + B)

has “remarkable properties.”

Question

How do you explain this to undergraduates?

Answer: You don’t!
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Classification of Torsion Subgroups

Theorem (Barry Mazur, 1977)

Let E is an elliptic curve over Q. Then

E(Q)tors ≃
{

ZN where 1 ≤ N ≤ 10 or N = 12;

Z2 × Z2N where 1 ≤ N ≤ 4.

Corollary (Gerhard Frey, 1989)

For each ABC Triple, the elliptic curve

EA,B,C : y
2 = x (x − A) (x + B)

has discriminant ∆(EA,B,C ) = 16A2 B2 C 2 and EA,B,C (Q)tors ≃ Z2 × Z2N .

Question

For each ABC Triple, which torsion subgroups do occur?

2013 SACNAS National Conference A Survey of Diophantine Equations



Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Elliptic Integrals
Elliptic Curves
Heron Triangles
The ABC Conjecture

Proposition (EHG and Jamie Weigandt, 2009)

All possible subgroups do occur – and infinitely often.

Proof: Choose relatively prime integers m and n. We have the following
N-isogeneous curves:

A B C EA,B,C (Q)tors

(

2m n
)2 (

m2 − n2
)2 (

m2 + n2
)2 Z2 × Z4

8m n
(

m2 + n2
) (

m − n
)4 (

m + n
)4 Z2 × Z2

16m n3
(

m + n
)3 (

m − 3 n
) (

m + 3 n
) (

m − n
)3 Z2 × Z6

16m3 n
(

m + n
) (

m − 3 n
)3 (

m + 3 n
)3 (

m − n
)

Z2 × Z2

(

2m n
)4

(

m
4
− 6m

2
n
2
+ n

4)

·
(

m
2
+ n

2)2

(

m2 − n2
)4 Z2 × Z8

16m n
(

m
2
− n

2)

·
(

m
2
+ n

2)2

(

m2 − 2m n − n2
)4 (

m2 + 2mm − n2
)4 Z2 × Z2
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Examples

Rank of Quality EA,B,C (Q)tors m n Quality q(A,B,C)

– Z2 × Z4 1029 1028
1.2863664657

– Z2 × Z2 1.3475851066

– Z2 × Z4
4 3

1.2039689894
35 Z2 × Z2 1.4556731002

– Z2 × Z6 5 1
1.0189752355

113 Z2 × Z2 1.4265653296

45 Z2 × Z6 729 7
1.4508584088

– Z2 × Z2 1.3140518205

– Z2 × Z8 3 1
1.0370424407

35 Z2 × Z2 1.4556731002

– Z2 × Z8 577 239
1.2235280800

– Z2 × Z2 1.2951909301
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Exceptional Quality Revisited

Proposition

There are infinitely many ABC Triples P = (A,B,C) with q(P) > 1.

Proof: For each positive integer k , define the relatively prime integers

Ak = 1, Bk = 2k+2 (2k − 1
)
, and Ck =

(
2k+1 − 1

)2
.

Then Pk = (Ak ,Bk ,Ck ) is an ABC Triple. Moreover,

rad
(
AkBkCk

)
= rad

(
(2k+1 − 2) (2k+1 − 1)

)
≤ (2k+1 − 2) (2k+1 − 1) < Ck .

Hence

q(Pk) =
max

{
ln |Ak |, ln |Bk |, ln |Ck |

}

ln
∣
∣rad(Ak Bk Ck)

∣
∣

=
ln |Ck |

ln
∣
∣rad(Ak Bk Ck )

∣
∣
> 1.

Corollary

If the ABC Conjecture holds, then lim sup q(A,B,C) = 1.
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Quality by Torsion Subgroup

Question

Fix N = 1, 2, 3, 4. Let F(N) denote the those ABC Triples (A,B,C) such
that EA,B,C (Q)tors ≃ Z2 × Z2N . What can we say about

lim sup
(A,B,C )∈F(N)

q(A,B,C)?

Theorem (Alexander Barrios, Caleb Tillman and Charles Watts, 2010)

Fix N = 1, 2, 4. There are infinitely many ABC Triples with

EA,B,C (Q)tors ≃ Z2 × Z2N and q(A,B,C) > 1.

In particular, if the ABC Conjecture holds, then lim supP∈F(N) q(P) = 1.

Proof: Use the formulas above to create a dynamical system!
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Can we use elliptic curves

to find ABC Triples

with exceptional quality q(A,B ,C )?
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In what follows, we will substitute Ak = m, Bk = n, and Ck = m + n.

A B C EA,B,C (Q)tors

(

2m n
)2 (

m2 − n2
)2 (

m2 + n2
)2 Z2 × Z4

8m n
(

m2 + n2
) (

m − n
)4 (

m + n
)4 Z2 × Z2

16m n3
(

m + n
)3 (

m − 3 n
) (

m + 3 n
) (

m − n
)3 Z2 × Z6

16m3 n
(

m + n
) (

m − 3 n
)3 (

m + 3 n
)3 (

m − n
)

Z2 × Z2

(

2m n
)4

(

m
4
− 6m

2
n
2
+ n

4)

·
(

m
2
+ n

2)2

(

m2 − n2
)4 Z2 × Z8

16m n
(

m
2
− n

2)

·
(

m
2
+ n

2)2

(

m2 − 2m n − n2
)4 (

m2 + 2mm − n2
)4 Z2 × Z2
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Motivation

Consider a sequence {P0, . . . , Pk , Pk+1, . . . } defined recursively by





Ak+1

Bk+1

Ck+1



 =





A2
k

B2
k − A2

k

B2
k



 or





4Ak Bk
(
Ak − Bk

)2

C 2
k



 .

Proposition (EHG and Jamie Weigandt, 2009)

If the following properties hold for k = 0, they hold for all k ≥ 0:

i. Ak , Bk , and Ck are relatively prime, positive integers.

ii. Ak + Bk = Ck .

iii. Ak ≡ 0 (mod 16) and Ck ≡ 1 (mod 4).

Corollary

For ǫ > 0, there exists δ such that max
{
ln |Ak |, ln |Bk |, ln |Ck |

}
> ǫ when

k ≥ δ. Hence q(Pk) > 1 for all k ≥ 0 if and only if q(P0) > 1.

There exists an infinite sequence with q(Pk) > 1.
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Z2 × Z2 and Z2 × Z4

Consider a sequence {P0, . . . , Pk , Pk+1, . . . } defined recursively by





Ak+1

Bk+1

Ck+1



 =





8Ak Bk

(
A2

k + B2
k

)

(
Ak − Bk

)4

C 4
k



 or






(
2Ak Bk

)2

(
A2

k − B2
k

)2

(
A2

k + B2
k

)2




 .

Proposition (Alexander Barrios, Caleb Tillman and Charles Watts, 2010)

If the following properties hold for k = 0, they hold for all k ≥ 0:

i. Ak , Bk , and Ck are relatively prime, positive integers.

ii. Ak + Bk = Ck .

iii. Ak ≡ 0 (mod 16) and Ck ≡ 1 (mod 4).

Corollary

For ǫ > 0, there exists δ such that max
{
ln |Ak |, ln |Bk |, ln |Ck |

}
> ǫ when

k ≥ δ. Hence q(Pk) > 1 for all k ≥ 0 if and only if q(P0) > 1.

There exist infinitely EPk
(Q)tors ≃ Z2 × Z2N for N = 1, 2; q(Pk) > 1.
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Z2 × Z6

Consider a sequence {P0, . . . , Pk , Pk+1, . . . } defined recursively by





Ak+1

Bk+1

Ck+1



 =





16Ak B
3
k

(
Ak + Bk

)3 (
Ak − 3Bk

)

(
Ak + 3Bk

) (
Ak − Bk

)3



 .

Proposition (Alexander Barrios, Caleb Tillman and Charles Watts, 2010)

If the following properties hold for k = 0, they hold for all k ≥ 0:

i. Ak , Bk , and Ck are relatively prime integers.

ii. Ak + Bk = Ck .

iii. Ak ≡ 0 (mod 16) and Ck ≡ 1 (mod 4).

Question

What condition do we need to guarantee that these are positive integers?
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Z2 × Z6?

We sketch why perhaps 3.214Bk > Ak . Define the rational number

xk =
Ak

Bk

=⇒







1

xk+1
− 1

xk
=

(
Ak + Bk

)3 (
Ak − 3Bk

)

16Ak B
3
k

− Bk

Ak

=
x4
k − 6 x2

k − 8 xk − 19

16 xk
.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

1

2

3

The largest root is x0 = 3.2138386, so 0 < xk+1 < xk < x0 is decreasing.
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Z2 × Z8

Consider a sequence {P0, . . . , Pk , Pk+1, . . . } defined recursively by





Ak+1

Bk+1

Ck+1



 =






(
2Ak Bk

)4

(
A4

k − 6A2
k B

2
k + B4

k

) (
A2

k + B2
k

)2

(
A2

k − B2
k

)4




 .

Proposition (Alexander Barrios, Caleb Tillman and Charles Watts, 2010)

If the following properties hold for k = 0, they hold for all k ≥ 0:

i. Ak , Bk , and Ck are relatively prime, positive integers.

ii. Ak + Bk = Ck and Bk > 3.174Ak .

iii. Ak ≡ 0 (mod 16) and Ck ≡ 1 (mod 4).

Corollary

For ǫ > 0, there exists δ such that max
{
ln |Ak |, ln |Bk |, ln |Ck |

}
> ǫ when

k ≥ δ. Hence q(Pk) > 1 for all k ≥ 0 if and only if q(P0) > 1.

There exists a sequence EPk
(Q)tors ≃ Z2 × Z8 and q(Pk) > 1.
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Z2 × Z8

We sketch why Bk > 3.174Ak . Define the rational number

xk =
Bk

Ak

=⇒







xk+1 − xk =

(
A4

k − 6A2
k B

2
k + B4

k

) (
A2

k + B2
k

)2

(
2Ak Bk

)4 − Bk

Ak

=
x8
k − 4 x6

k − 16 x5
k − 10 x4

k − 4 x2
k + 1

16 x4
k

.

-2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4

-3

-2

-1

1

2

3

The largest root is x0 = 3.1737378, so x0 < xk < xk+1 is increasing.
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Example

We can generate many examples of ABC Triples P = (A,B,C) with

EA,B,C (Q)tors ≃ Z2 × Z8 and q(A,B,C) > 1.

We consider the recursive sequence defined by





Ak+1

Bk+1

Ck+1



 =






(
2Ak Bk

)4

(
A4

k − 6A2
k B

2
k + B4

k

) (
A2

k + B2
k

)2

(
A2

k − B2
k

)4




 .

Initialize with P0 =
(
162, 632, 652

)
so that we have

i. Ak , Bk , and Ck are relatively prime, positive integers.

ii. Ak + Bk = Ck and Bk > 3.174Ak .

iii. Ak ≡ 0 (mod 16) and Ck ≡ 1 (mod 4).

k Ak Bk Ck q(Pk )

0 28 34 · 72 52 · 132 1.05520

1 236 · 316 · 78 412 · 881 · 20113 · 3858172 · 13655297 58 · 138 · 474 · 794 1.00676
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Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Elliptic Integrals
Elliptic Curves
Heron Triangles
The ABC Conjecture

Further Topics for Elliptic Curves

How can we find curves of large rank? Play around with k (or t) to find a
curve E with group E(Q) ≃ Z2 × Z8 × Z4.

http://www.math.purdue.edu/~egoins/site//SUMSRI.html

Will this win me $1,000,000? Yes, according to the Clay Mathematics
Institute!

http://www.claymath.org/millennium/

Work of Wiles’ on Fermat’s Last Theorem used elliptic curves. What’s
being studied now? Modular Forms, Quaternion Algebras, and Shimura
Varieties!

http://en.wikipedia.org/wiki/Shimura_variety

2013 SACNAS National Conference A Survey of Diophantine Equations

http://www.math.purdue.edu/~egoins/site//SUMSRI.html
http://www.claymath.org/millennium/
http://en.wikipedia.org/wiki/Shimura_variety


Part I: 1:00 PM – 2:25 PM
Break: 2:30 PM – 2:40 PM
Part II: 2:45 PM – 3:40 PM

Elliptic Integrals
Elliptic Curves
Heron Triangles
The ABC Conjecture

Number Theory is COOL!
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