Dislocation Climb in Discrete Dislocation Dynamics

Yang Xiang

Department of Mathematics Hong Kong University of Science and Technology

HKUST-ICERM Program on Integral Equation Methods, Fast Algorithms and Their Applications to Fluid Dynamics and Materials Science, HKUST, 3 -13 Jan 2017

Dislocations: line defects in crystals

Atomic description
 Continuum description

edge dislocation

 $\boldsymbol{u} = (u_1, u_2, u_3)$ is the elastic displacement vector (multi-valued)

L is any close contour enclosing dislocation line

b is the Burgers vector

Dislocations and plastic deformation

Primary carriers of plastic deformation

Dislocation Glide

- Dislocations mainly move by glide at not very high temperatures.
- Motion within the slip plane (containing the dislocation and its Burgers vector).
- Conservative motion.

Dislocation Climb

Non-conservative motion of dislocations

Absorbing vacancies/interstitials

Plays important roles in the plastic deformation of crystalline materials at high temperature, e.g. in dislocation creep

Point Defects

Vacancy

Interstitial impurity

Continuum Dislocation Theory

displacement vector $\mathbf{u} = (u_1, u_2, u_3)$

strain tensor

stress tensor

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$
$$\sigma_{ij} = \sum_{k,l} C_{ijkl} \varepsilon_{kl}$$
$$\nabla \cdot \boldsymbol{\sigma} = 0$$

with dislocation
$$\oint_L d\mathbf{u} = \mathbf{b}$$
 or $\nabla \times \mathbf{w} = \boldsymbol{\xi} \delta(\boldsymbol{\gamma}) \otimes \boldsymbol{b}$
 $\mathbf{w}_{ij} = \partial u_j / \partial x_i$

w: distortion tensor, b: Burgers vector, ξ : dislocation line direction

Long-range interaction of dislocations

Peach-Koehler formula for the stress (isotropic linear elasticity, whole space):

$$\sigma = \frac{\mu}{4\pi} \oint_C (\mathbf{b} \times \nabla') \frac{1}{R} \otimes d\mathbf{l}'$$
$$+ \frac{\mu}{4\pi} \oint_C d\mathbf{l}' \otimes (\mathbf{b} \times \nabla') \frac{1}{R}$$
$$- \frac{\mu}{4\pi(1-\nu)} \oint_C \nabla' \cdot (\mathbf{b} \times d\mathbf{l}') (\nabla \otimes \nabla - \mathbf{I} \nabla^2) R$$

C is the dislocation line x', y', z' are integral variables $R=[(x-x')^2+(y-y')^2+(z-z')^2)]^{1/2}$ μ and v are elastic constants

Peach-Koehler force $f = (\sigma \cdot b) \times \xi$

Discrete Dislocation Dynamics

Direct simulation of motion and interaction of dislocations

Three-dimensional DDD simulations: Kubin et al, *Solid State Phenomena* 1992, ...

Glide velocity of dislocations $v = M \cdot f$ M: mobility

Dislocation climb by mobility law in DDD

Raabe, Phil Mag 1998 (Osmotic force)Ghoniem, Tong, Sun, Phys. Rev. B 2000 (Osmotic force)Xiang et al, Acta Mater 2003; Xiang & Srolovitz, Phil Mag 2006Arsenlis et al, Modelling Simul Mater Sci Eng 2007

Discrete Dislocation Dynamics

Front tracking discretization

---- straight or curved dislocation segments

Level set dislocation dynamics method

Xiang, Cheng, Srolovitz, E, Acta Mater 2003.

Vacancy Diffusion Assisted Dislocation Climb

• Vacancy diffusion equation (in equilibrium when climb is slow)

$$\frac{\partial c}{\partial t} = \nabla \cdot (D_v \nabla c) = 0$$

• Equilibrium condition near dislocation (boundary condition depending on the climb PK force)

$$c_d = c_0 e^{-rac{f_{
m cl}\Omega}{b_e k_B T}}$$
 f_{cl} : climb PK force b_e =b sin B

• Climb velocity is associated with vacancy flux into the dislocation

$$v_{\rm cl} = \left. \frac{2\pi r_d D_v}{b_e} \frac{\partial c}{\partial n} \right|_{r_d}$$

β: angle between dislocation line direction *ξ* and the Burgers vector *b*

$$f_{
m cl} = {f f} \cdot ({m \xi} imes {f b}/b_e)$$

Hirth & Lothe, *Theory of Dislocations*, 1982.

Climb of a single straight edge dislocation

Climb velocity of a single straight edge dislocation

$$v_{\rm cl} = \frac{2\pi D_v}{b\ln(r_\infty/r_d)} \left(c_\infty - c_0 e^{-\frac{f_{\rm cl}\Omega}{bk_BT}}\right)$$

 $c(r) = c_{\infty} + \frac{c_{\infty} - c_d}{\ln(r_{\infty}/r_d)} \ln \frac{r}{r_{\infty}}$

Hirth & Lothe, *Theory of Dislocations*, 1982. Mordehai, Clouet, Fivel, Verdier, *Phil Mag* 2008.

• Reduce to the mobility law when $c_{\infty} = c_0$ and f_{cl} is small

$$v_{\rm cl} = m_c f_{\rm cl}$$
 $m_c = \frac{2\pi D_v c_0 \Omega}{b^2 k_B T \ln(r_\infty/r_d)}$

 r_{∞}

 v_{cl}

Dislocation Climb with Vacancy Diffusion in DDD

• This climb velocity formula for straight edge dislocation was widely used in DDD (with modifications).

Mordehai, Clouet, Fivel, Verdier, *Phil Mag* 2008. Bako et al, *Phil Mag* 2011. Morderhai & Martin, *Phys Rev B* 2011. Keralavarma et al, *Phys Rev Lett* 2012. Quek et al, *Modelling Simul Mater Sci Eng* 2013.

 None of the existing methods solve vacancy diffusion (equilibrium) accurately for climb of general dislocation systems (multiple, arbitrary shape) in DDD.

Green's function formulation for Dislocation Climb

Yejun Gu, Xiang, Quek, Srolovitz, J Mech Phys Solids 2015

Vacancy diffusion (equilibrium) equation

$$\frac{\partial c}{\partial t} = D_v \Delta c - h\delta(\Gamma) = 0 \qquad \qquad h = b_e v_{cl}$$

F: dislocations

Solution using Green's function

$$c(x, y, z) = -\frac{1}{4\pi D_v} \int_{\Gamma} \frac{h(x_1, y_1, z_1)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}} dl + c_{\infty}$$

Green's function $G(x, y, z) = -\frac{1}{4\pi D_v \sqrt{x^2 + y^2 + z^2}}$

Equilibrium condition near a dislocation

$$-\frac{1}{4\pi D_v} \int_{\Gamma} \frac{h(x_1, y_1, z_1)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 + r_d^2}} dl + c_{\infty} = c_0 e^{-\frac{f_{cl}\Omega}{b_e k_B T}} \Big|_{(x, y, z)}$$
for any point (x, y, z) on the dislocations.

Algorithm for Calculating Climb Velocity

1. Solve the integral equation for h

$$-\frac{1}{4\pi D_v} \int_{\Gamma} \frac{h(x_1, y_1, z_1)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 + r_d^2}} dl + c_{\infty} = c_0 e^{-\frac{f_{cl}\Omega}{b_e k_B T}} \Big|_{(x, y, z)}$$

for all points (x,y,z) on dislocations.

Non-local formula

2. <u>Calculate climb velocity from h</u>

 $V_{cl}=h/b_e$

for all non-screw points on dislocations.

Cutoff and linear interpolation of f_{cl}/b_e near screw ($b_e=0$)

Applications of Green's Function Formulation

Agrees with Hirth & Lothe 1982

Two Prismatic Dislocation Loops

- Local climb mobility law only for well separated dislocations
- Long-range effect due to vacancy diffusion
- In addition to the long-range effect of PK force

Two Prismatic Dislocation Loops

Greens' function formulation leads to the linear system

$$\frac{b}{4\pi D_{v}} \left(\frac{4R_{1}K\left(\frac{2R_{1}}{\sqrt{4R_{1}^{2}+r_{d}^{2}}}\right)}{\sqrt{4R_{1}^{2}+r_{d}^{2}}} v_{cl}^{(1)} + \frac{4R_{2}K\left(\frac{2\sqrt{R_{1}R_{2}}}{\sqrt{(R_{1}+R_{2})^{2}+H^{2}+r_{d}^{2}}}\right)}{\sqrt{(R_{1}+R_{2})^{2}+H^{2}+r_{d}^{2}}} v_{cl}^{(2)} \right) = c_{\infty} - c_{0}e^{-\frac{f_{cl}^{(1)}\Omega}{bk_{B}T}},$$

$$\frac{b}{4\pi D_{v}} \left(\frac{4R_{1}K\left(\frac{2\sqrt{R_{1}R_{2}}}{\sqrt{(R_{1}+R_{2})^{2}+H^{2}+r_{d}^{2}}}\right)}{\sqrt{(R_{1}+R_{2})^{2}+H^{2}+r_{d}^{2}}} v_{cl}^{(1)} + \frac{4R_{2}K\left(\frac{2R_{2}}{\sqrt{4R_{2}^{2}+r_{d}^{2}}}\right)}{\sqrt{4R_{2}^{2}+r_{d}^{2}}} v_{cl}^{(2)} \right) = c_{\infty} - c_{0}e^{-\frac{f_{cl}^{(1)}\Omega}{bk_{B}T}}.$$

Solution

$$\begin{pmatrix} v_{\rm cl}^{(1)} \\ v_{\rm cl}^{(2)} \\ v_{\rm cl}^{(2)} \end{pmatrix} = \frac{2\pi D_v c_0 \Omega}{b^2 k_B T (A_{11} A_{22} - A_{12} A_{21})} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} f_{\rm cl}^{(1)} \\ f_{\rm cl}^{(2)} \\ f_{\rm cl}^{(2)} \end{pmatrix}$$
$$A_{11} = \ln \frac{8R_2}{r_d}, \ A_{12} = -\frac{2R_2}{\sqrt{(R_1 + R_2)^2 + H^2}} K \left(\frac{2\sqrt{R_1 R_2}}{\sqrt{(R_1 + R_2)^2 + H^2}}\right),$$

$$A_{21} = -\frac{2R_1}{\sqrt{(R_1 + R_2)^2 + H^2}} K\left(\frac{2\sqrt{R_1R_2}}{\sqrt{(R_1 + R_2)^2 + H^2}}\right), \ A_{22} = \ln\frac{8R_1}{r_d}$$

Multiple Prismatic Loops

Climb velocity of the innermost loop

Our Green's function formulation provides a systematic tool to handle the long-range effect due to vacancy diffusion.

Stability of a Low Angle Tilt Boundary

- Perturbation in inter-dislocation distance
- Perturbation wavelength λ =ND, $r_j(t) = jD + \varepsilon e^{\omega t} \cos \frac{2\pi j}{N}$
- Stabilized by dislocation climb

Yejun Gu, Xiang, Srolovitz, Scripta Mater 2016

Local mobility law, $\omega \sim 1/\lambda$ Green's function formulation $\omega \sim 1/\lambda^2$

Implementing Climb in Discrete Dislocation Dynamics To solve integral equations along dislocations

$$-\frac{1}{4\pi D_v} \int_{\Gamma} \frac{h(x_1, y_1, z_1)}{\sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 + r_d^2}} dl + c_{\infty} = c_0 e^{-\frac{f_{\rm cl}\Omega}{b_e k_B T}} \Big|_{(x, y, z)}$$

b~

Numerical discretization for the integral:

$$\begin{split} \int_{\Gamma} &\approx \sum_{j} \int_{P_{j}P_{j+1}} \\ &\int_{P_{j}P_{j+1}} \frac{h(x_{1},y_{1},z_{1})}{r_{i}(x_{1},y_{1},z_{1})} dl \approx \\ & h^{j} \int_{P_{j}P_{j+\frac{1}{2}}} \frac{dl}{r_{i}(x_{1},y_{1},z_{1})} \\ &+ h^{j+1} \int_{P_{j+\frac{1}{2}}P_{j+1}} \frac{dl}{r_{i}(x_{1},y_{1},z_{1})} \\ \end{split}$$

Numerical Algorithm to Implement Climb in Discrete Dislocation Dynamics

1. To solve the linear system

$$\sum_{j=1}^{N} a_{ij}h^{j} = 4\pi D_{v} \left(c_{\infty} - c_{0}e^{-\frac{g^{i}\Omega}{k_{B}T}} \right) \qquad \begin{array}{l} g=f_{cl}/b_{e} \text{ for nonscrew} \\ \text{points and linear} \\ \text{interpolation in between} \end{array}$$

$$a_{ii} = \ln \frac{\delta_1 \delta_2}{r_d^2} \qquad \text{with} \qquad I_k = \begin{cases} \ln \frac{\sqrt{A_k^2 + 4A_k B_k + 4A_k C} + A_k + 2B_k}{2(\sqrt{A_k C} + B_k)} & \text{if } \sqrt{A_k C} + B_k \neq 0\\ \ln \frac{2(\sqrt{A_k C} - B_k)}{\sqrt{A_k^2 + 4A_k B_k + 4A_k C} - A_k - 2B_k} & \text{otherwise} \end{cases}$$

$$a_{ij} = I_1 + I_2$$

for
$$k = 1, 2$$
, and

2. <u>Calculate v_{cl} from h</u>

$$V_{cl}^{i}=h^{i}/b_{e}^{i}$$

for non-screw points

$$\begin{split} A_1 &= (x^j - x^{j-1})^2 + (y^j - y^{j-1})^2 + (z^j - z^{j-1})^2 \\ A_2 &= (x^j - x^{j+1})^2 + (y^j - y^{j+1})^2 + (z^j - z^{j+1})^2 \\ B_1 &= (x^j - x^{j-1})(x^i - x^j) + (y^j - y^{j-1})(y^i - y^j) + (z^j - z^{j-1})(z^i - z^j) \\ B_2 &= (x^j - x^{j+1})(x^i - x^j) + (y^j - y^{j+1})(y^i - y^j) + (z^j - z^{j+1})(z^i - z^j) \\ C &= (x^i - x^j)^2 + (y^i - y^j)^2 + (z^i - z^j)^2 \\ P_i &= (x^i, y^i, z^i), \ P_j &= (x^j, y^j, z^j), \ P_{j\pm 1} = (x^{j\pm 1}, y^{j\pm 1}, z^{j\pm 1}). \end{split}$$

<u>Calculation of climb component of Peach-Koehler force (f_{cl}) </u>

Many methods available:

Kubin et al 1992; Zbib et al 1998; Schwarz 1999; Xiang et al 2003; Wang et al 2004; Cai et al 2006; Arsenlis et al 2007; Zhao, Huang & Xiang 2010 ...

The climb velocity using our nonlocal Green's function formulation can be calculated with the **same order of computational cost** as that of calculation of the longrange Peach-Koehler force in the available DDD methods.

A single prismatic loop

Numerical solutions

<u>A single prismatic loop</u>

N=6	10.5966	1.1305	0.6151	0.5290	0.6151	1.1305
A =	1.1305	10.5966	1.1305	0.6151	0.5290	0.6151
	0.6151	1.1305	10.5966	1.1305	0.6151	0.5290
	0.5290	0.6151	1.1305	10.5966	1.1305	0.6151
	0.6151	0.5290	0.6151	1.1305	10.5966	1.1305
	1.1305	0.6151	0.5290	0.6151	1.1305	10.5966

Condition number

1.8223 for N=10 4.2213 for N=100

Dislocation bypassing an impenetrable particle (test)

- Edge dislocation, driven by applied stress
- Impenetrable particle
- Climbs when glide reaches equilibrium

Jiang, Rachh, Xiang, SIAM Multiscale Model. Simul. 2017

$$\Delta c = 0, \text{ in } D,$$

$$c(\mathbf{r}) = g_i = c_0 e^{-\frac{f_{c_1}^{(i)} \Omega}{b k_B T}}, \text{ on } \Gamma_i, \quad i = 1, \dots, N,$$

$$c(\mathbf{r}) = c_{\infty}, \text{ on } \Gamma_0.$$

$$\mathbf{f}_{PK} = (\boldsymbol{\sigma} \cdot \mathbf{b}) \times \boldsymbol{\tau}$$

$$\sigma_{11}(x_i, y_i) = -\sum_{j \neq i} \operatorname{sgn}(j) \cdot \frac{\mu b}{2\pi (1 - \nu)} \frac{(y_i - y_j)[3(x_i - x_j)^2 + (y_i - y_j)^2]}{[(x_i - x_j)^2 + (y_i - y_j)^2]^2}$$

$$v_{\rm cl}^{(i)} = \frac{D_v}{b} \int_{\Gamma_i} \frac{\partial c(\boldsymbol{r})}{\partial \boldsymbol{\nu}_{\boldsymbol{r}}} dS(\boldsymbol{r}), \quad i = 1, \dots, N.$$

$$c(\boldsymbol{r}) = \sum_{i=1}^{N} \left(\mathcal{D}_{\Gamma_{i}}[\rho_{i}](\boldsymbol{r}) + \frac{1}{2\pi |\Gamma_{i}|} \left(\int_{\Gamma_{i}} \rho_{i} dS \right) \log |\boldsymbol{r} - \boldsymbol{r}_{i}| \right) + \mathcal{D}_{\Gamma_{0}}[\rho_{0}](\boldsymbol{r})$$

$$-\frac{1}{2}\rho_i(\boldsymbol{r}) + \mathcal{D}_{\Gamma_i}^{PV}[\rho_i](\boldsymbol{r}) + \mathcal{D}_{\Gamma_0}[\rho_0](\boldsymbol{r}) + \sum_{\substack{j=1\\j\neq i}}^{N} \mathcal{D}_{\Gamma_j}[\rho_j](\boldsymbol{r})$$

$$+\sum_{j=1}^{N}\frac{1}{2\pi|\Gamma_{j}|}\left(\int_{\Gamma_{j}}\rho_{j}dS\right)\log|\boldsymbol{r}-\boldsymbol{r}_{i}|=g_{i},\quad\boldsymbol{r}\in\Gamma_{i},\quad i=1,\ldots,N.$$

$$-\frac{1}{2}\rho_0(\boldsymbol{r}) + \mathcal{D}_{\Gamma_0}^{PV}[\rho_0](\boldsymbol{r}) + \sum_{i=1}^N \left(\mathcal{D}_{\Gamma_i}[\rho_i](\boldsymbol{r}) + \frac{1}{2\pi |\Gamma_i|} \left(\int_{\Gamma_i} \rho_i dS \right) \log |\boldsymbol{r} - \boldsymbol{r}_i| \right) = c_{\infty}, \quad \boldsymbol{r} \in \Gamma_0,$$

- (a) Algorithm 1: FMM+GMRES, i.e, use GMRES to solve the linear system iteratively with the FMM [4, 14] to accelerate the computation of the matrix-vector product.
- (b) Algorithm 2: FDS, i.e., use the fast direct solver [20, 22] to construct an efficient factorization for A^{-1} to high precision, then simply apply the compressed A^{-1} to b to obtain the solution vector.
- (c) Algorithm 3: FDS+FMM+GMRES, i.e., use the fast direct solver to constrct an efficient factorization for the matrix inverse with low accuracy, denoted by A_{la}^{-1} , then apply FMM accelerated iterative solve to solve the preconditioned linear system $A_{\text{la}}^{-1}Ax = A_{\text{la}}^{-1}b$.

 r_a

Dynamics of dislocation dipole

$$v_{\rm cl,a}(r_a(t)) = \frac{\pi D_v}{b\ln(r_\infty/\sqrt{r_a(t)r_d})} \left(c_\infty - c_0 e^{-\frac{f_{\rm cl}(t)\Omega}{bk_B T}}\right)$$

Number of GMRES iterations

stopping tolerance 10^{-10}

Algorithm 1

N	8^{2}	16^{2}	32^{2}	62^{2}	128^{2}
p=2	33	47	77	120	200
p=4	33	47	74	130	200
p = 6	33	47	77	120	190
p = 8	33	47	90	140	180

Algorithm 3

Random

N	8^{2}	16^{2}	32^{2}	64^2	128^{2}	256^{2}	512^2
p=2	3	4	4	4	4	5	5
p=4	3	4	4	4	4	5	5
p = 6	3	3	4	4	4	5	5
p = 8	3	4	4	4	4	5	5

Timing (algorithms 1,2,3)

Upscaling from atomistic scheme to dislocation dynamics

Niu, Luo, Lu, Xiang, J Mech Phys Solids 2017

Vacancy diffusion

 $c_t = D_v (c_{xx} + c_{yy} + c_{zz})$, in the bulk,

$$-\frac{\partial c}{\partial n} = \left. \frac{1}{l_{\phi}} \left(c - k_v c_d \right) \right|_{r=r_d},$$

Finite exchange rates between dislocation sites and bulk sites

Conservative climb of prismatic loops by pipe diffusion

Experimental Observation: Kroupa & Prince 1961, Hirth & Lothe 1982.

- Not very high temperature; Under stress gradient
- Vacancy pipe diffusion dominates; Bulk diffusion is shut down

Other approach: translation of the whole loop with energy barrier Swinburne et al, Scientific Report 2016,

Summary

- Green's function formulation for vacancy/interstitial diffusion assisted dislocation climb
- Nonlocal, incorporating new long-range effect of climb velocity due to vacancy diffusion
- Widely used local climb velocity formula applies only to some special cases.
- Numerical implementation method in DDD
- Applications and generalizations

