Quadrature by Multipole Expansion

Matt Wala

UIUC
January 5, 2017

Motivation

QBX works by constructing local expansions of layer potentials, which are functions of the form $f(x)=\int_{\partial \Omega} G(x, y) \mu(y) d y$. What if we decided to use multipole expansions instead?

■ Why would we want to do this?
■ What would such a scheme look like?

Motivation

Consider the case of a decaying Green's function $G(x, y)$.
■ Local (polynomial) expansions do not reproduce the decay of the layer potential in the exterior domain.
■ If you use multipoles ($G(x, y)$ and its derivatives) as an expansion basis, the expansion does reproduce this decay.
■ Could this lead to more accurate expansions?

Derivation

We're going to work with the double layer potential in \mathbb{R}^{2}, which comes from dipoles.
Away from the curve Γ, the double layer can be shown to satisfy the complex line integral

$$
D \mu(z)=-\frac{1}{2 \pi} \operatorname{Im} \int_{\Gamma} \frac{\mu(y)}{y-z} d y
$$

where μ is real-valued.

Derivation

Expansions (both local and multipole) consist of source points, target points, and centers.
We're going to follow the convention:
■ $y=$ source

- $z=$ target

■ $c=$ center

Derivation

Introduce an expansion center c into the kernel

$$
\frac{1}{y-z}=\frac{1}{(y-c)-(z-c)}
$$

Assuming that $|c-z|<|c-y|$, applying the geometric series gets

$$
\begin{aligned}
\frac{1}{(y-c)-(z-c)} & =\frac{1}{y-c}\left(\frac{1}{1-\frac{z-c}{y-c}}\right) \\
& =\frac{1}{y-c}\left(1+\left(\frac{z-c}{y-c}\right)+\cdots\right)
\end{aligned}
$$

Derivation

This gives us a Taylor series

$$
D \mu(z)=-\frac{1}{2 \pi} \operatorname{Im} \sum_{k=0}^{\infty} \int_{\Gamma} \frac{\mu(y)(z-c)^{k}}{(y-c)^{k+1}} d y
$$

This is the first step to (standard) QBX.

Derivation

If we instead assume that $|c-z|>|c-y|$, the geometric series is

$$
\begin{aligned}
\frac{1}{(y-c)-(z-c)} & =\frac{1}{c-z}\left(\frac{1}{\frac{y-c}{c-z}-1}\right) \\
& =\frac{1}{c-z}\left(\frac{1}{1-\frac{c-y}{c-z}}\right) \\
& =\frac{1}{c-z}\left(1+\left(\frac{c-y}{c-z}\right)+\cdots\right)
\end{aligned}
$$

Derivation

Formally, the multipole expansion of $D \mu$ takes the form:

$$
\begin{equation*}
D \mu(z)=-\frac{1}{2 \pi} \operatorname{Im} \sum_{k=0}^{\infty} \int_{\Gamma} \mu(y) \frac{(c-y)^{k}}{(c-z)^{k+1}} d y \tag{1}
\end{equation*}
$$

This equation does not specify where to put c.

Center Placement

A valid center $c=c(t)$ may not exist for every target t (violates assumption $|c-y|<|c-z|)$.

Center Placement

Idea is to let the center vary by source $c=c(s)$. Convergence criterion $|c(y)-y|<|c(y)-z|$ is satisfied.

FMM

Is this FMM-compatible? Yes. Insight: When discretized, centers become multipole "sources".
source coefficient

$$
\int_{\partial \Omega} \sum_{k=0}^{p} \frac{\mu(y)(c-y)^{k}}{(c-z)^{k+1}} d y \approx \sum_{i=1}^{n} \sum_{k=0}^{p} \frac{\overbrace{i} \mu\left(y_{i}\right)\left(c_{i}-y_{i}\right)^{k}}{\underbrace{\left(c_{i}-z\right)^{k+1}}_{\text {multipole }}}
$$

Results

- Error terms can be split into truncation error and quadrature error.
- We did an empirical study: How does the truncation error of QBMX compare to QBX?

Results

■ We computed the truncation error in the QBMX scheme compared to the QBX scheme for a potential on the exterior of a domain. We used the double layer potential in 2 dimensions.

- We used a fixed expansion radius of $r=0.1$. For QBX, the expansion centers were placed on the exterior of the domain, while for QBMX the centers were placed on the interior.

Results (I)

density	QBX $^{(1)}$	QBX $^{(3)}$	QBX $^{(5)}$	QBMX $^{(1)}$	QBMX $^{(3)}$	QBMX $^{(5)}$
$\sin (\tau)$	$4.1(-03)$	$3.4(-05)$	$2.8(-07)$	$\mathbf{5 . 2 (- 1 5)}$	$\mathbf{5 . 1 (- 1 4)}$	$\mathbf{8 . 1 (- 1 3)}$
$\sin (3 \tau)$	$2.2(-02)$	$4.4(-04)$	$6.7(-06)$	$5.0(-03)$	$\mathbf{6 . 3 (- 1 5)}$	$\mathbf{2 . 7 (- 1 3)}$
$\sin (5 \tau)$	$4.8(-02)$	$1.8(-03)$	$4.3(-05)$	$2.6(-02)$	$5.0(-05)$	$\mathbf{5 . 8 (- 1 4)}$

Results for unit circle

Results (II)

density	QBX $^{(1)}$	QBX $^{(3)}$	QBX $^{(5)}$	QBMX $^{(1)}$	QBMX $^{(3)}$	QBMX $^{(5)}$
$\sin (\tau)$	$2.6(-03)$	$9.8(-05)$	$4.7(-06)$	$3.2(-03)$	$1.1(-05)$	$3.9(-07)$
$\sin (3 \tau)$	$1.7(-02)$	$6.1(-04)$	$2.9(-05)$	$4.1(-03)$	$8.2(-05)$	$1.4(-06)$
$\sin (5 \tau)$	$4.2(-02)$	$2.2(-03)$	$1.1(-04)$	$1.3(-02)$	$3.3(-04)$	$1.8(-06)$

Results for ellipse with semiaxes $a=2, b=1$

Results (III)

density	QBX $^{(1)}$	QBX $^{(3)}$	QBX $^{(5)}$	QBMX $^{(1)}$	QBMX $^{(3)}$	QBMX $^{(5)}$
$\sin (\tau)$	$5.4(-03)$	$7.3(-05)$	$1.5(-06)$	$2.0(-02)$	$1.3(-03)$	$9.8(-05)$
$\sin (3 \tau)$	$4.1(-02)$	$1.1(-03)$	$2.8(-05)$	$5.6(-02)$	$4.2(-03)$	$3.3(-04)$
$\sin (5 \tau)$	$1.0(-01)$	$5.1(-03)$	$1.8(-04)$	$1.2(-01)$	$1.1(-02)$	$1.0(-03)$

Results for oval of Cassini
$\left(w(\tau)=\left(\cos (2 \tau)+\sqrt{a^{4}-\sin ^{2}(2 \tau)}\right)^{1 / 2} e^{i \tau}, a=1.15\right)$

Conclusions

QBX with multipoles is possible:

- compatible with FMM
- high order (empirically)

Many open questions remain:
■ In what situations is using multipoles practical?
■ Can we give a good error estimate?

