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Motivation

QBX works by constructing local expansions of layer
potentials which are functions of the form
= [ G( (y) dy. What if we decided to use
mu/t/po/e expan5|ons instead?
m Why would we want to do this?

m What would such a scheme look like?



Motivation

Consider the case of a decaying Green's function G(x,y).
m Local (polynomial) expansions do not reproduce the
decay of the layer potential in the exterior domain.

m If you use multipoles (G(x,y) and its derivatives) as an
expansion basis, the expansion does reproduce this decay.

m Could this lead to more accurate expansions?



Derivation

We're going to work with the double layer potential in R?,
which comes from dipoles.

Away from the curve I', the double layer can be shown to
satisfy the complex line integral

Du(z) = L Im/r #y) dy.

y—z

where o is real-valued.



Derivation

Expansions (both local and multipole) consist of source points,
target points, and centers.
We're going to follow the convention:

W y = source
m z — target

m C = center



Derivation

Introduce an expansion center c¢ into the kernel
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Assuming that |c — z| < |c — y|, applying the geometric series
gets




Derivation

This gives us a Taylor series
k
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This is the first step to (standard) QBX.



Derivation

If we instead assume that |c — z| > |c — y|, the geometric
series is
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Derivation

Formally, the multipole expansion of Dy takes the form:

Du( ImZ/ k+1 dy.

This equation does not specify where to put c.



Center Placement

A valid center ¢ = c(t) may not exist for every target t (violates
assumption |c — y| < |c — z|).




Center Placement

Idea is to let the center vary by source ¢ = ¢(s). Convergence
criterion |c(y) — y| < |c(y) — z| is satisfied.

. centers .




FMM

Is this FMM-compatible? Yes. Insight: When discretized,
centers become multipole “sources”.
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Results

m Error terms can be split into truncation error and
quadrature error.

m We did an empirical study: How does the truncation error
of QBMX compare to QBX?



Results

m We computed the truncation error in the QBMX scheme
compared to the QBX scheme for a potential on the

exterior of a domain. We used the double layer potential
in 2 dimensions.

m We used a fixed expansion radius of r = 0.1. For QBX,
the expansion centers were placed on the exterior of the

domain, while for QBMX the centers were placed on the
interior.



Results (1)

density
sin(T)

sin(37)
sin(57)

QBX(I)

4.1(-03)
2.2(-02)
4.8(-02)

QBX®  QBX®  QBMX®
3.4(-05) 2.8(-07) 5.2(-15)
4.4(-04) 6.7(-06) 5.0(-03)
1.8(-03) 4.3(-05) 2.6(-02)

QBMX®  QBMX®)
5.1(-14) 8.1(-13)
6.3(-15) 2.7(-13)
5.0(-05) 5.8(-14)

Results for unit circle



Results (II)

density QBX®  QBX®)  QBX® QBMX® QBMX®)  QBMX®)
sin(r)  2.6(-03) 9.8(-05) 4.7(-06) 3.2(-03) 1.1(-05)  3.9(-07)
sin(37) 1.7(-02) 6.1(-04) 2.9(-05) 4.1(-03)  8.2(-05)  1.4(-06)
sin(57) 4.2(-02) 2.2(-03) 1.1(-04) 1.3(-02) 3.3(-04) 1.8(-06)

Results for ellipse with semiaxes a=2,b=1



Results (111)

density QBX®  QBX® QBX® QBMX® QBMX® QBMX®)
sin(t)  5.4(-03) 7.3(-05) 1.5(-06) 2.0(-02) 1.3(-03) 9.8(-05)
sin(37) 4.1(-02) 1.1(-03) 2.8(-05) 5.6(-02) 4.2(-03) 3.3(-04)
sin(57) 1.0(-01) 5.1(-03) 1.8(-04) 1.2(-01) 1.1(-02) 1.0(-03)

Results for oval of Cassini

1/2
(w(r) = (cos(2¢) +4/a* — sin2(27)> e a=1.15)



Conclusions

QBX with multipoles is possible:
m compatible with FMM
m high order (empirically)
Many open questions remain:

m In what situations is using multipoles practical?

m Can we give a good error estimate?



