Coupled Elliptic Solvers for Embedded Mesh and Interface Problems

Natalie Beams, Andreas Klöckner, Luke Olson

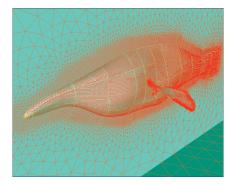
University of Illinois at Urbana-Champaign

5 January 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Complicated geometry, time-dependent problems...

- 1. Conforming/refined mesh
 - Lose advantages of structured mesh
 - What if domain changes with time?

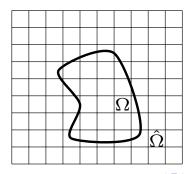


Source: Ramamurti et al., J Exp Biol. 205, 2997-3008 (2002)

N. Beams, A. Klöckner, L. Olson Coupled Elliptic Solvers/Interface Problems

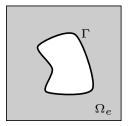
Complicated geometry, time-dependent problems...

- $1. \ {\sf Conforming/refined} \ {\sf mesh}$
 - Lose advantages of structured mesh
 - What if domain changes with time?
- 2. Embedded domain methods
 - How best to enforce the true boundary conditions?
 - Can we do this in a high-order way?



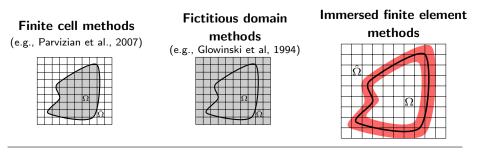
Embedded domain types

Interior problem on Ω_i embedded in a fictitious domain $\hat{\Omega}$

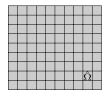


Problem in Ω_e is treated as a domain with an exclusion

Embedded domains & finite elements



Finite element-integral equation method (Rüberg & Cirak, 2010)



FF

Layer potential IE

- High-order implementation of immersed boundary methods, immersed interface methods, etc. can be tricky
- Our FE-IE implementation is high order when components are high order

Consider test problem:

$$-\nabla \cdot \nabla u(x) = 1 \qquad x \in \Omega$$
$$u(x) = 0 \qquad x \in \partial \Omega \tag{1}$$

• Domain Ω is circle centered at (0,0) with radius r = 0.5; Embedded in $\hat{\Omega} = [-0.6, 0.6] \times [0.6, 0.6]$

5

• Splitting is:

$$\begin{bmatrix} \mathsf{FE} \end{bmatrix} - \nabla \cdot \nabla u_1(x) = 1 \qquad x \in \hat{\Omega} \\ u_1 = 0 \qquad x \in \partial \hat{\Omega} \\ \begin{bmatrix} \mathsf{IE} \end{bmatrix} - \nabla \cdot \nabla u_2(x) = 0 \qquad x \in \Omega \\ u_2 = -u_1 \qquad x \in \partial \Omega \end{aligned}$$
(2)

N. Beams, A. Klöckner, L. Olson Coupled Elliptic Solvers/Interface Problems

FE basis order	qbx	h_{fe} , h_{ie}	$\ error\ _{\infty}$	$\ error\ _0$	order			
1	2	0.0300, 0.0786 0.0150, 0.0393 0.0075, 0.0196	$ \begin{array}{c} \textbf{2.32} \times 10^{-4} \\ \textbf{5.07} \times 10^{-5} \\ \textbf{9.35} \times 10^{-6} \end{array} $	$\begin{array}{c} 4.35 \times 10^{-5} \\ 8.28 \times 10^{-6} \\ 1.88 \times 10^{-6} \end{array}$	_ 2.39 2.14			
2	3	0.0300, 0.0786 0.0150, 0.0393 0.0075, 0.0196	$\begin{array}{c c} \textbf{3.91}{\times}10^{-5} \\ \textbf{3.79}{\times}10^{-6} \\ \textbf{3.05}{\times}10^{-7} \end{array}$	$\begin{array}{c} 9.16 \times 10^{-6} \\ 8.93 \times 10^{-7} \\ 7.03 \times 10^{-8} \end{array}$	_ 3.36 3.67			
3	4	0.0300, 0.0786 0.0150, 0.0393 0.0075, 0.0196	$ \begin{vmatrix} 8.02 \times 10^{-6} \\ 4.33 \times 10^{-7} \\ 1.81 \times 10^{-8} \end{vmatrix} $	$ \begin{vmatrix} 2.00 \times 10^{-6} \\ 1.06 \times 10^{-7} \\ 4.36 \times 10^{-9} \end{vmatrix} $	_ 4.24 4.60			

Convergence of our implementation for the interior FE-IE problem:

N. Beams, A. Klöckner, L. Olson Coupled Elliptic Solvers/Interface Problems

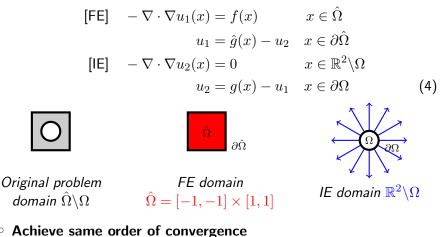
Now consider the "complementary" problem (domain with exclusion):

$$\begin{aligned}
-\nabla \cdot \nabla u(x) &= f(x) & x \in \hat{\Omega} \backslash \Omega \\
u(x) &= g(x) & x \in \partial \Omega \\
u(x) &= \hat{g}(x) & x \in \partial \hat{\Omega}
\end{aligned} \tag{3}$$

With
$$\hat{\Omega} = [-1, -1] \times [1, 1]$$

FE-IE for exclusion(s): new splitting

- Interior FE problem & purely exterior IE problem, 0 coupled through boundary conditions \rightarrow coupled system
- Split problems are now:



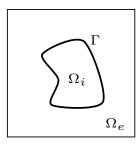
0

9

Consider the interface problem

$$-\beta \nabla \cdot \nabla u(x) = f(x) \quad \text{in} \quad \Omega_i \cup \Omega_e, \quad \text{with}$$
$$u^i(x) = cu^e(x) + a(x) \quad \text{on} \quad \Gamma, \quad \text{and}$$
$$\frac{\partial u^i(x)}{\partial n} = \kappa \frac{\partial u^e(x)}{\partial n} + b(x) \quad \text{on} \quad \Gamma$$

with two domains Ω_i and Ω_e separated by an interface Γ :



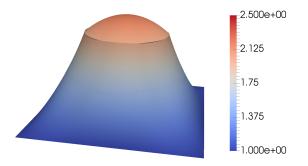
(5)

Interior problem on Ω_i embedded in a fictitious domain $\hat{\Omega}$

Problem in Ω_e is treated as a domain with an exclusion

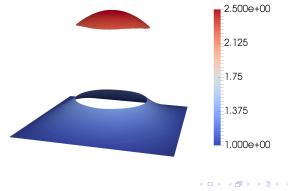
= coupled interior & exterior solutions

- Flexible representation through combinations of single & double layer potentials
- · Can handle non-homogeneous jump conditions in derivative...



12

- Flexible representation through combinations of single & double layer potentials
- Can handle non-homogeneous jump conditions in derivative... and value



Interface problems: sample coupled system

IE self op.	FE eval.	IE eval.	FE eval.	$\left[\sigma^{i}\right]$	[jump] cond.]
	FE matrix				interior r.h.s.
	FE eval.	IE self op.	FE eval.	σ^e	jump cond.
IE off- curve eval.		IE off- curve eval.	FE matrix	U^e	exterior r.h.s

Summary

- $^{\circ}\,$ Combine best aspects of FE and IE solvers
- Flexible representation for interior domains, domains with exclusions, and many interface problems
- Computational mechanics behind FE and IE solvers remain largely unchanged
- $^{\circ}\,$ High-order convergence, even near the embedded boundary