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Complicated geometry, time-dependent problems...

1. Conforming/refined mesh
• Lose advantages of structured mesh
• What if domain changes with time?

2. Embedded domain methods
• How best to enforce the true boundary conditions?
• Can we do this in a high-order way?

2999Fluid dynamics of flapping aquatic flight

a tropical fish wholesaler and maintained in a 228 l aquarium
within a 2300 l recirculating marine system until it was
euthanised with an overdose of MS-222 (Finquel brand,
Aldrich Chemical Co.) and frozen at −20°C.

Three-dimensional wrasse body and pectoral fin description
To obtain the 3-D surface coordinates of a bird wrasse, an

individual of standard length L=21 cm was frozen and sliced
into nine transverse sections. Section outlines were digitized
using a modification of the public domain NIH Image program
(developed at the US National Institutes of Health and
available on the Internet at http://rsb.info.nih.gov/nih-image/)
for the Apple Macintosh (the modification is available upon
request from J. A. Walker). The outline coordinates were used
to generate a smooth surface using standard cubic spline
methods. While the digitized individual is representative of the
geometry of the subjects from the experiment (Walker and
Westneat, 1997), it was not one of the experimental subjects.
The exact geometry and the corresponding surface mesh of the
bird wrasse for which the computations were done are shown
in Fig. 1. 

Pectoral fin kinematics data
Pectoral fin surface coordinates were estimated from the

experimental data. In the original experiment of Walker and
Westneat (1997), five aluminum markers were attached to one
of the pectoral fins: two on the leading edge, two on the trailing
edge and one on the fin tip. Fin motion was filmed using S-
VHS videotape at 60 Hz. The five fin markers and the dorsal
base of the pectoral fin were digitized from both lateral and
dorsal views. The 3-D coordinates of the markers throughout
the cycles were obtained from the marker positions in the two
views. For the present analysis, the motion of the three distal-
edge markers was smoothed with a quintic spline function
(Walker, 1998). In order to remove the kink in the distal (tip)
edge of the fin that necessarily resulted from having only three

digitized points, a smooth curve was fitted to the distal edge
by increasing the number of points to 14 (the number of fin
rays in the fin), using linear interpolation and smoothing the
distal edge with a quintic spline function (Walker, 1998). 3-D
surface coordinates were obtained by linear interpolation
between the digitized pectoral fin base of the representative
individual, scaled to the size of an experimental individual, and
the distal edge of an experimental individual.

Walker and Westneat (1997) observed that the fins flapped
synchronously during rectilinear motion at all test speeds. They
also noted that G. varius flapped its pectoral fins up and down
with a small anterior movement during abduction and a small
posterior movement during adduction. Flapping frequency was
seen to increase linearly with speed. The mean flapping
frequency was 2.9 Hz at 22 cm s–1 and 4.2 Hz at 50 cm s–1. In
the computations carried out here, we used a pectoral fin-
oscillation frequency of 3.3 Hz, corresponding to a swimming
speed of approximately 45 cm s–1 (2 L s–1). The digitized

Fig. 1. Computational surface mesh for body and pectoral fin.
Fig. 2. Pectoral fin and markers during (A) mid-phase and (B) late
phase of downstroke.

Source: Ramamurti et al., J Exp Biol. 205, 2997–3008 (2002)
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Embedded domain types

Ωi

Γ

Ω̂

Interior problem on Ωi

embedded in a fictitious
domain Ω̂

Γ

Ωe

Problem in Ωe is treated as a
domain with an exclusion

N. Beams, A. Klöckner, L. Olson Coupled Elliptic Solvers/Interface Problems HKUST, 5 Jan 2017 2



Embedded domains & finite elements

Finite cell methods
(e.g., Parvizian et al., 2007)

Ω

Ω̂

Fictitious domain

methods
(e.g., Glowinski et al, 1994)

Ω

Ω̂

Immersed finite element

methods

Ω

Ω̂

Finite element-integral
equation method
(Rüberg & Cirak, 2010) Ω̂

FE

+ Ω

Layer potential IE
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Embedded mesh problems: convergence

◦ High-order implementation of immersed boundary methods,
immersed interface methods, etc. can be tricky

◦ Our FE-IE implementation is high order when components are
high order
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Embedded mesh problems: convergence

◦ Consider test problem:

−∇ · ∇u(x) = 1 x ∈ Ω

u(x) = 0 x ∈ ∂Ω (1)

◦ Domain Ω is circle centered at (0, 0) with radius r = 0.5;
Embedded in Ω̂ = [−0.6, 0.6]× [0.6, 0.6]

Ω̂

Ω
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Embedded mesh problems: convergence

Ω̂

Ω

◦ Splitting is:

[FE] −∇ · ∇u1(x) = 1 x ∈ Ω̂

u1 = 0 x ∈ ∂Ω̂

[IE] −∇ · ∇u2(x) = 0 x ∈ Ω

u2 = −u1 x ∈ ∂Ω (2)
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Embedded mesh problems: convergence

Convergence of our implementation for the interior FE-IE problem:

FE basis order qbx hfe, hie ‖error‖∞ ‖error‖0 order

1 2
0.0300, 0.0786 2.32×10−4 4.35×10−5 –
0.0150, 0.0393 5.07×10−5 8.28×10−6 2.39
0.0075, 0.0196 9.35×10−6 1.88×10−6 2.14

2 3
0.0300, 0.0786 3.91×10−5 9.16×10−6 –
0.0150, 0.0393 3.79×10−6 8.93×10−7 3.36
0.0075, 0.0196 3.05×10−7 7.03×10−8 3.67

3 4
0.0300, 0.0786 8.02×10−6 2.00×10−6 –
0.0150, 0.0393 4.33×10−7 1.06×10−7 4.24
0.0075, 0.0196 1.81×10−8 4.36×10−9 4.60

N. Beams, A. Klöckner, L. Olson Coupled Elliptic Solvers/Interface Problems HKUST, 5 Jan 2017 7



Embedded mesh problems: convergence

Now consider the “complementary” problem
(domain with exclusion):

Ω̂

Ω

−∇ · ∇u(x) = f(x) x ∈ Ω̂\Ω
u(x) = g(x) x ∈ ∂Ω

u(x) = ĝ(x) x ∈ ∂Ω̂ (3)

With Ω̂ = [−1,−1]× [1, 1]
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FE-IE for exclusion(s): new splitting

◦ Interior FE problem & purely exterior IE problem,
coupled through boundary conditions → coupled system

◦ Split problems are now:

[FE] −∇ · ∇u1(x) = f(x) x ∈ Ω̂

u1 = ĝ(x)− u2 x ∈ ∂Ω̂

[IE] −∇ · ∇u2(x) = 0 x ∈ R2\Ω
u2 = g(x)− u1 x ∈ ∂Ω (4)

Original problem
domain Ω̂\Ω

∂Ω̂
Ω̂

FE domain
Ω̂ = [−1,−1]× [1, 1]

Ω
∂Ω

IE domain R2\Ω

◦ Achieve same order of convergence
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Coupled subproblems for interface problems

Consider the interface problem

−β∇ · ∇u(x) = f(x) in Ωi ∪ Ωe, with

ui(x) = cue(x) + a(x) on Γ, and

∂ui(x)

∂n
=κ

∂ue(x)

∂n
+ b(x) on Γ (5)

with two domains Ωi and Ωe separated by an interface Γ:

Γ

Ωe

Ωi
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Coupled subproblems for interface problems

Ωi

Γ

Ω̂

Interior problem on Ωi

embedded in a fictitious
domain Ω̂

+

Γ

Ωe

Problem in Ωe is treated as
a domain with an exclusion

= coupled interior & exterior solutions
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Coupled subproblems for interface problems

◦ Flexible representation through combinations of
single & double layer potentials

◦ Can handle non-homogeneous jump conditions in derivative...
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Coupled subproblems for interface problems

◦ Flexible representation through combinations of
single & double layer potentials

◦ Can handle non-homogeneous jump conditions in derivative...
and value
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Interface problems: sample coupled system



IE self op. FE eval. IE eval. FE eval.

FE matrix

FE eval. IE self op. FE eval.

IE off- IE off-
FE matrix

curve eval. curve eval.





σi

U i

σe

U e


=



jump
cond.

interior
r.h.s.

jump
cond.

exterior
r.h.s
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Summary

◦ Combine best aspects of FE and IE solvers

◦ Flexible representation for interior domains, domains with exclusions,
and many interface problems

◦ Computational mechanics behind FE and IE solvers remain largely
unchanged

◦ High-order convergence, even near the embedded boundary
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