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Part I. Integral Equation Methods



Basic observation

Many problems originally posed in the PDE form can be solved as
follows.

Convert it to an integral equation formulation that is as
well-conditioned as the underlying physical problem.

Discretize the involved integrals accurately via some
high-order quadrature.

Solve the resulting linear system and/or evaluate the resulting
discrete summation efficiently via fast algorithms.



Integral equation formulation and potential theory

For many problems, the starting point is the so-called
fundamental solution or Green’s function G for a constant
coefficient differential operator L. The original PDE does not
have to be constant coefficient.

To deal with the inhomogeneous term, one may need the
so-called volume potential, which is the convolution integral
of G with a function f on the entire domain.

To deal with the boundary conditions, one needs various layer
potentials that are the convolution of G or its partial
derivatives with a function σ on the boundary.

For time-dependent problems, one also needs the so-called
initial potential that is the convolution of G with the initial
data u0 on the spatial domain.



Green’s function for the Laplace/Poisson equation

In the following, both x and y are points in Rn; all differential
operators are acting on x , y is regarded as a fixed source point. δ
refers to the Dirac delta function whose rigorous definition requires
the theory of distributions (or generalized functions) developed by
Laurent Schwartz in 1940s with proper test functions (for example,
C∞0 (Rn), i.e., smooth functions with compact support).

The Laplace equation

∆G (x , y) = −δ(x − y)

G (x , y) =


− 1

2π
log r , n = 2

1

(n − 2)ωn

1

rn−2
, n > 2.

(1.1)

Here r = |x − y |, ωn = 2
√
π
n
/Γ( 1

2n) is the surface area of the
unit sphere in Rn. In particular, ω2 = 2π, ω3 = 4π.



Green’s function for the Helmholtz equation

The Helmholtz equation

(∆ + k2)G (x , y) = −δ(x − y)

G (x , y) =


i

4
H

(1)
0 (k |x − y |), n = 2

1

4π

e ik|x−y |

|x − y |
, n = 3.

(1.2)

Here H
(1)
0 is the zeroth order Hankel function of the first kind

(see, for example, NIST Digital Library of Mathematical
Functions at http://dlmf.nist.gov/). The Green’s
function satisfies the Sommerfeld radiation condition:

lim
r→∞

r
n−1

2

(
∂

∂r
− ik

)
G (r) = 0.

http://dlmf.nist.gov/


The Poisson equation in free space
The Poisson equation

−∆u(x) = f (x), x ∈ R3, lim
|x |→∞

u(x) = 0. (1.3)

And the solution to (1.3) is simply the volume potential.

u(x) = V [f ](x) :=

∫
R3

1

4π|x − y |
f (y) dy , x ∈ R3. (1.4)

The Fourier transform of the G is
Ĝ (k) =

∫
R3 G (x) e−i k·x dx = 1

|k|2 . Thus when f is smooth and

has compact support, u(x) can be computed via nonuniform fast
Fourier transform efficiently and accurately (Jiang, Greengard, and
Bao 2012). In fact, one could replace G by G̃ (x) = G (x)IBR(0),
where IBR(0) is the indicator function of BR(0). It is

straghtforward to calculate the Fourier transform of G̃ (x) and
show that it is actually smooth. One may then simply use the FFT
to compute u(x) to high accuracy.
When f is highly nonuniform, one may switch to the fast multipole
method to compute u(x) directly.



Other PDEs in free space
The same approach can be applied to solve many other PDEs
in free space including the Helmholtz equation ∆u + k2u = f ,
the Yukawa equation or the Poisson-Boltzmann equation
∆u − k2u = f , the biharmonic equation ∆2u = f , etc.
It can also be used to solve the so-called fractional PDEs. For
example, The fractional Poisson equation

(−∆)1/2u(x) = f (x), x ∈ R2, lim
|x |→∞

u(x) = 0.

(1.5)
The Green’s function is G (x , y) = 1

2π|x−y | and the solution to

(1.5) is again given by the volume potential

u(x) =

∫
R2

1

2π|x − y |
f (y) dy , x ∈ R2. (1.6)

Once again, one may use the FMM to evaluate u(x) when f is
highly nonuniform and simply the FFT when a uniform grid is
sufficient to resolve f . Another approach is to approximate
1/r by a sum of Gaussians.



Performance comparison

The multigrid method is the most efficient way to solve the
elliptic PDEs directly.

For a detailed comparison of the performance of various
schemes, see the paper “FFT, FMM, or multigrid? A
comparative study of state-of-the-art Poisson solvers for
uniform and nonuniform grids in the unit cube”, by A.
Gholami, D. Malhotra, H. Sundar, and G. Biros in SIAM J.
Sci. Comput. 38, no. 3, C280–C306, 2016.

One important remark is that here the FMM refers to the
volume FMM instead of the classical FMM for computing the
discrete summations. That is, the FMM here precomputes
and stores tables for all the integrals involved the near
interactions and the tree has to be a level restricted 2 : 1 tree.



Boundary value problems

Suppose we are trying to solve the Dirichlet problem of the
Poisson equation:

−∆u(x) = f (x), x ∈ D

u = g(x). x ∈ ∂D.
(1.7)

The inhomogeneous term is easily dealt with the volume
potential

V [f ](x) =

∫
D
G (x , y)f (y)dy . (1.8)

Here the density is simply f and one only needs to evaluate
the volume potential. There is no need to solve!!

The boundary condition will be dealt with layer potentials
with some unknown density.

By the superposition principle for linear problems, the whole
representation could look like this:

u(x) = V [f ](x) + D[σ](x). (1.9)



Layer potentials

Let D ⊂ Rn be a bounded domain. Its boundary is denoted by
∂D with ν the unit outward normal vector.

The single layer potential is defined by the formula:

S [σ](x) =

∫
∂D

G (x , y)σ(y)dsy . (1.10)

The double layer potential is defined by the formula:

D[σ](x) =

∫
∂D

∂G (x , y)

∂ν(y)
σ(y)dsy . (1.11)

Higher-order layer potentials such as the quadruple layer
potential, the octuple layer potential, etc. can be defined
similarly by taking higher-order derivatives of the Green’s
function as the kernels.



Single and Double Layer Potentials

Very often we may also need to consider the normal
derivatives of single and double layer potentials.

S ′[σ](x) =
∂

∂ν(x)

∫
∂D

G (x , y)σ(y)dsy . (1.12)

D ′[σ](x) =
∂

∂ν(x)

∫
∂D

∂G (x , y)

∂ν(y)
σ(y)dsy . (1.13)



Jump Relations

Assume for now that the boundary ∂D is of class C 2.

The single layer potential is continuous across the boundary,
while its normal derivative satisfies the following jump relation:

lim
ε→0+

S ′[σ] (x ± ενx) = S ′[σ] (x)∓ 1

2
σ(x), x ∈ ∂D. (1.14)

The double layer potential satisfies the following jump relation:

lim
ε→0+

D[σ] (x ± ενx) = D[σ] (x)± 1

2
σ(x), x ∈ ∂D, (1.15)

while its normal derivative D ′ is actually continuous across the
boundary.



What about the Helmholtz equation?

The jump relations of the layer potentials for the Helmholtz
equation are exactly the same as those for the Laplace
equation.

This is because the leading singular term of the Green’s
function of the Helmholtz equation is identical to the Green’s
function of the Laplace equation.



Another useful fact

A well-known fact in potential theory states that

(x − y) · νy = O(|x − y |2), for y → x when x , y ∈ ∂D. (1.16)

Hence,

∂G (x , y)

∂νy
=

1

4π

(x − y) · νy
|x − y |3

= O

(
1

|x − y |

)
. (1.17)

That is, the kernel of the double layer potential is only weakly
singular and thus integrable.



Boundary integral equations

For the Dirichlet problem, we represent the solution via the
double layer potential and need to solve the following
boundary integral equation (BIE):

±1

2
σ(x) + D[σ](x) = b(x). (1.18)

For the Neumann problem, we represent the solution via the
single layer potential and need to solve the following boundary
integral equation:

∓1

2
σ(x) + S ′[σ](x) = b(x). (1.19)

Similarly, the Robin problem can be solved via a single layer
potential representation.



Advantages of the BIE approach
The unknown density σ is only on the boundary. This reduces
the dimension of the problem by one in the solve phase and
thus the total number of unknowns by a large extent.
It is easier to design high-order discretization scheme for the
boundary and the unknowns on the boundary rather than the
whole volume and the unknowns in the whole volume,
especially in the case of complex geometries. In two
dimensions, one only needs to discretize the boundary curves
instead of the 2D domain; while in three dimensions, one only
needs to discretize the boundary surfaces instead of the 3D
domain.
The integral formulation leads to a well-conditioned linear
system which requires a constant number of iterations to
solve. This is only true for the so-called second kind integral
equations.
For exterior problems, there is no need to design artificial
boundary conditions to truncate the computational domain
when the integral formulation is used.



Types of integral equations

Volterra - the integration domain depends on the target point.
Fredholm - the integration domain is the whole boundary.

First kind - the integral operator is compact.

Second kind - the integral operator is Identity operator +
Compact operator.

Singular - the integral operator is singular, i.e., the integrals
are defined in the sense of principal value. Examples include
the Hilbert transform in 1D, the Riesz transform in higher
dimensions, and layer potentials with the tangential derivative
of the Green’s function as the kernel.

Hypersingular - the integral operator is hypersingular, i.e., the
integrals are defined in the sense of finite part. Examples
include the layer potentials with the second order derivatives
of the Green’s function as the kernel for second order PDEs.



Integral operators
Integral operators - Let G ∈ Rm be a nonempty compact and
Jordan measurable set (i.e., its characteristic function ξG is
Riemann integrable). Then the linear operator
A : X (G )→ X (G ) defined by

A[φ](x) :=

∫
G
K (x , y)φ(y)dy , x ∈ G ,

is called an integral operator. Here K : G × G → C is the
kernel of the operator.
X could be C (space of continuous functions), C 0,α (Holder
continuous functions with exponent α), L2 (also a Hilbert
space when combined with the natural inner product), Lp, HP

(Sobolev space, roughly speaking, it contains functions whose
p-th order weak derivative also belongs to L2).
K could be continuous, weakly singular, singular, or
hypersingular.
The associated integral operator A might be compact,
compact, bounded, and unbounded.



Compact operators

A linear operator A : X → Y is called compact if it maps each
bounded set in X into a relatively compact set in Y .

A is compact if and only if for each bounded sequence (φn) in
X the sequence (Aφn) contains a convergent subsequence in
Y .

Compact linear operators are bounded.

If A and B are compact, then their linear combination
αA + βB is also compact.

If A and B are bounded, then AB is compact if one of them is
compact.

If A is the limit of a sequence compact operators (An), then A
is compact.

A bounded operator with finite dimensional range is compact.

An integral operator with continuous or weakly singular kernel
is compact.



Riesz Theory

Let I be the identity operator and A : X → X be a compact
operator. Define the second kind operator Lby

L := I − A.

First Riesz Theorem. The nullspace of the operator L, i.e.,

N(L) := {φ ∈ X : Lφ = 0},

is a finite dimensional subspace.

Second Riesz Theorem. The range of L
L(X ) := {Lφ : φ ∈ X}, is a closed linear subspace.

Theorem. I − A is injective (one-to-one) if and only if it is
surjective (onto).



Second kind integral operators
If the homogeneous equation

φ− Aφ = 0

only has the trivial solution φ = 0, then for each f ∈ X the
inhomogeneous equation

φ− Aφ = f

has a unique solution φ ∈ X and this solution depends
continuously on f .
If the homogeneous equation has m linearly independent
solutions φ1, · · · , φm, then the inhomogeneous is either
unsolvable or its general solution is of the form

φ = φ̃+
m∑

k=1

αkφk ,

where φ̃ is a particular solution.
That is, a second kind linear operator equation behaves
exactly like a finite dimensional linear system.



Spectral theory for compact operators

λ is an eigenvalue of A if Aφ = λφ for some φ 6= 0.

λ is a regular value if (λI − A)−1 exists and is bounded.

The set of all regular values of A is called the resolvent set
ρ(A).

The complement of ρ(A) in C is called the spectrum σ(A) and

r(A) := sup
λ∈σ(A)

|λ|

is called the spectral radius of A.



Spectral theory for compact operators

Let A : X → X be a compact linear operator on an infinite
dimensional normed space X . Then λ = 0 belongs to the
spectrum σ(A) and σ(A) \ {0} consists of at most a countable
set of eigenvalues with no point of accumulation except,
possibly, λ = 0.

That is, zero is the only possible limit point of the eigenvalues
of A if A is compact.



Dual system, bilinear or sesquilinear forms

bilinear or sesquilinear forms - A mapping (·, ·) : X × Y → C
is called a sesquilinear form if

(α1φ1 + α2φ2, ψ) = α1(φ1, ψ) + α2(φ2, ψ),

(φ, β1ψ1 + β2ψ2) = β∗1(φ, ψ1) + β∗2(φ, ψ2).

It is bilinear if β∗1 , β∗2 are replaced by β1, β2.

Two normed spaces X , Y equipped with a bilinear or
sesquilinear form is called a dual system and denoted by
〈X ,Y 〉.
Adjoint operator. Let 〈X1,Y1〉 and 〈X2,Y2〉 be two dual
systems. Then two operators A : X1 → X2, B : Y1 → Y2 are
call adjoint if

〈Aφ, ψ〉 = 〈φ,Bψ〉

for all φ ∈ X1, ψ ∈ Y2.



The Fredholm Alternative

Let A : X → X , B : Y → Y be compact adjoint operators in
a dual system 〈X ,Y 〉. Then either I − A and I − B are
bijective (i.e., one-to-one and onto and thus invertible) or
I −A and I −B have nontrivial nullspace with finite dimension

dimN(I − A) = dimN(I − B) ∈ N

and the ranges are given by

(I − A)(X ) = {f ∈ X : 〈f , ψ〉 = 0, ψ ∈ N(I − B)}

and

(I − B)(Y ) = {g ∈ Y : 〈φ, g〉 = 0, φ ∈ N(I − A)}.



Integral equation version

Let K be a continuous or weakly singular kernel. Then either
the homogeneous integral equations

φ(x)−
∫
G
K (x , y)φ(y)dy = 0, x ∈ G ,

ψ(x)−
∫
G
K (y , x)ψ(y)dy = 0, x ∈ G ,

only have the trivial solutions φ = 0 and ψ = 0 and the
inhomogeneous integral equations

φ(x)−
∫
G
K (x , y)φ(y)dy = f (x), x ∈ G ,

ψ(x)−
∫
G
K (y , x)ψ(y)dy = g(x), x ∈ G ,

have a unique solution for every right hand side.



Integral equation version

or the homogeneous integral equations have the same finite
number m ∈ N of linearly independent solutions and the
inhomogeneous integral equations are solvable if and only if
the right-hand sides satisfy∫

G
f (x)ψ(x)dx = 0

for all solutions ψ of the homogeneous adjoint equation and∫
G
φ(x)g(x)dx = 0

for all solutions φ of the homogeneous equation, respectively.



Key issue of the integral equation formulation

For SKIEs, the most important theorectical issue is probably
the analysis of their nullspace. If there is a nontrivial
nullspace, what is the dimension of the nullspace and how do
we modify the formulation to eliminate the nullspace?

Sometimes this can be done by adding lower order terms to
the integral representation.

One could also apply a neat trick in Sifuentes, Gimbutas, and
Greengard (2015) to solve a rank-deficient linear system when
the dimension of the nullspace is known.



Time-dependent PDEs

We will use the heat equation as the example.

The fundamental solution (or Green’s function) of the heat
equation satisfies the equation:

∂G

∂t
= ∆G + δ(x − y)δ(t − τ)

and is given by the formula

G (x , t; y , τ) =
1

[4π(t − τ)]n/2
e
− |x−y|2

4(t−τ) . (1.20)



Various potentials associated with the heat equation

Volume potential:

V [f ](x , t) =

∫ t

0

∫
D
G (x , t; y , τ)f (y , τ)dydτ.

Initial potential:

I [g ](x , t) =

∫
D
G (x , t; y , 0)g(y)dy .

Single layer potential:

S [σ](x , t) =

∫ t

0

∫
∂D

G (x , t; y , τ)σ(y , τ)dsydτ.

Double layer potential:

D[σ](x , t) =

∫ t

0

∫
∂D

∂G (x , t; y , τ)

∂νy
σ(y , τ)dsydτ.



Jump relations of the heat layer potentials

The heat layer potentials satify exactly the same jump
relations as those of the Laplace or the Helmholtz equation.

That is,

lim
ε→0+

S ′[σ] (x ± ενx , t) = S ′[σ] (x , t)∓ 1

2
σ(x , t), x ∈ ∂D.

lim
ε→0+

D[σ] (x ± ενx , t) = D[σ] (x , t)± 1

2
σ(x , t), x ∈ ∂D.



Initial-boundary value problem of the heat equation

Consider the initial-boundary value problem of the heat
equation:

ut = ∆u + f (x , t), (x , t) ∈ D × [0,T ]

u(x , 0) = u0(x), x ∈ D

u(x , t) = g(x , t), (x , t) ∈ ∂D × [0,T ].

(1.21)

We could represent the solution as follows:

u(x , t) = V [f ](x , t) + I [u0](x , t) + D[σ](x , t). (1.22)

Once again, we only need to evaluate the volume and initial
potentials. The only unkown here is σ, the density for the
double layer potential.

Other boundary conditions can be dealt with similarly.



Issues with the heat potentials

Heat (layer) potentials contain integrals in both time and
space.

The direct evaluation require O(N2
TN

2
S) work.

The direct application of the FMM is expensive and difficult
since (i). it is on 3 + 1 space which increases the number of
boxes in the interaction list from 63 − 33 = 189 for 3D FMM
to 64 − 34 = 1215 for 4D FMM; (ii). the time has a preferred
direction and thus needs special treatment.

See Shaobo Wang’s PhD thesis (NJIT 2016) for some
progress on the evaluation of heat potentials.



Other PDEs

Integral equation methods have also been developed for
solving the Stokes equations for incompressible flows, the
unsteady Stokes flow (Jiang, Veerapaneni, Greengard 2012),
the Euler equations, the biharmonic equation, the modified
biharmonice equation, time harmonic Maxwell’s equations,
and PDEs on manifolds.

The wave equation is kind of difficult even though we know its
Green’s function. The reason is that it is difficult to obtain a
well-condioned integral equation formulation, and it is difficult
to design a stable fast algorithm for the evaluation of wave
layer potentials. Currently under development.



Variable coefficient PDEs

Consider, for example, the variable coefficient Helmholtz
equation in 2D:

∆u(x) + k2(1 + q(x))u(x) = f (x) (1.23)

subject to the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (1.24)

One could represent u via the volume potential

u(x) = V [ψ](x) =

∫
D
Gk(x , y)ψ(y)dy ,

where ψ is the unknown density.

Then ψ satisfies the so-called Lippmann-Schwinger integral
equation:

ψ(x) + k2q(x)V [ψ](x) = f (x).

That is, one needs to solve a volume integral equation instead.



Eigenvalue problems

Integral equation methods can also be used to solve the
eigenvalue problems of various PDEs including the eigenvalue
problem of the Laplace problem for different domains, the
transmission eigenvalue problem, the Stokes eigenvalue
problems, and the mode calculation of optical waveguides (Lai
and Jiang 2016).

The basic idea is to represent the eigensolution via a suitably
chosen layer potentials so that the representation satisfies the
PDE in the domain and the boundary conditions lead to a set
of integral equations. Here the eigenvalues usually appear as a
nonlinear parameter (very often, a parameter in the
fundamental solution) in the integral equations.



Others means of deriving integral equation formulation

Besides using a linear combination and/or product of various
potentials, one may also use Green’s formula to derive the
so-called “direct” integral equations.

Sometimes the Dirichlet-to-Neumann map may be used.

For the linearized Boltmann equation in nonequilibrium gas
dynamics in six dimensional phase space, one may integrate
along the characteristic line to obtain a system of second kind
integral equations about macroscopic variables such as
velocity, density, and temperature defined in physical space
only.



Discretization of integral equations

Suppose that we are trying to solve an integral equation of
the form

A[φ](x) = f (x), x ∈ G

numerically, where A : X → X is some integral operator
acting on the function space X (G ) with X the infinitely
dimensional function space and G the underlying domain
upon which the functions are defined.

There are several methods for discretizing integral equations -
projection method, collocation method, Galerkin method,
Nystrom method.

The projection method constructs a sequence of projection
operators Pn : X → Xn and solve the integral equation in the
finite dimensional function space Xn instead

PnAφn = Pnf .



Discretization of integral equations
The collocation method selects a set of collocation points xi ,
i = 1, · · · , n in G and try to solve

A[φ](xi ) = f (xi ), i = 1, · · · , n.
We still need to discretize the involved integrals though. The
collocation points are also called the supporting nodes
sometimes.
Suppose that A : X → Y with both X and Y some Hilbert
spaces. Then the Galerkin method selects a finite dimensional
subspace Xn = span{u1, · · · , un} and Yn = span{v1, · · · , vn},
express the approximate solution via a linear combination of
ui , i.e., φn =

∑n
i=1 xiui , and tries to solve the following finite

dimensional problem
n∑

i=1

(Aui , vj)xi = (f , vj), j = 1, · · · , n.

Here xi , i = 1, · · · , n are the unknown coefficients to be
solved. Cons: need to evaluate double integrals!



Discretization of integral equations
Nystrom’s method. Suppose that we need to solve the
following SKIE

φ(x)−
∫
G
K (x , y)φ(y)dy = f (x), x ∈ G .

Nystrom’s method (sometimes also called the quadrature
method) approximates the integral by some quadrature. That
is,

φ(x)−
n∑

j=1

w(x)jK (x , yj)φ(yj) = f (x), x ∈ G .

Here the quadrature weights usually depends on the target
point x and thus we have denote it by w(x) explicitly.
We still need to discretize x variable. This is done via the
collocation method. And we obtain the following discrete
linear system:

φi −
n∑

j=1

wijK (xi , yj)φj = fi , i = 1, · · · ,m.



Discretization of integral equations

Both the collocation method and Nystrom’s method give only
semi-discrete systems, and one obtains a fully discrete linear
system only by combining these two methods. However, in
literature, the collocation-Nystrom method is simply called
Nystrom’s method.

In any case, Nystrom’s method is an efficient method for
solving the SKIEs. It can be viewed as a special case of the
Galerkin method where one chooses the test functions as Dirac
delta functions. On the other hand, most of the fully discrete
implementation of Galerkin methods may be interpreted as
implementations of a related collocation method.



Quadratures

Very general remark - the currently available quadratures for
smooth, weakly singular, nearly singular, singular, and
hypersingular integrals depend strongly on the dimension of
the integration domain.

To summarize, there are many excellent quadratures for one
dimensional integrals of almost all types. This includes
classical Gaussian quadratures, generalized Gaussian
quadratures, hybrid Gauss-trapezoidal rule, etc.

For higher dimensional integrals, the number of options
decreases significantly. This include tensor product
quadrature, polar or spherical coordinates, Duffy quadrature,
and nearly optimal quadratures for smooth functions over
triangles, tetrahedra, and general convex domains in 2D by
Xiao and Gimbutas, and Vioreanu and Rokhlin, and weakly
singular and singular integrals over triangles by Gimbutas and
Bremer.



The QBX scheme

A. Klöckner, A. Barnett, L. Greengard, M. O’Neil, Quadrature
by expansion: A new method for the evaluation of layer
potentials, Journal of Computational Physics 252, 332-349,
2013.

C. L. Epstein, L. Greengard, A. Klöckner, On the convergence
of local expansions of layer potentials, SIAM Journal on
Numerical Analysis 51 (5), 2660-2679, 2013.

M. Rachh, A. Klöckner, M. O’Neil, Fast algorithms for
Quadrature by Expansion I: Globally valid expansions,
arXiv:1602.05301, 2016.

To be discussed in detail by Andreas.



Part II. Fast Algorithms



Application background

Two of the principal problems encountered in applied and
computational mathematics are (1) the application of various
linear operators (or rather, their discretizations) to more or
less arbitrary vectors; and (2) solving the boundary (initial, or
initial-boundary) value problems of various partial differential
equations (PDE).

Examples of linear operators: differential operator, various
transformations (Legendre transform, Chebyshev transform,
Laplace transform, Fourier transform, Radon transform, etc.),
integral operators, etc.

Examples of PDEs: the Laplace equation or the Poisson
equation, the Helmholtz equation, the heat equation, the
Schrödinger equation, the wave equation, Maxwell’s
equations, Navier-Stokes equations, Stokes equations,
biharmonic equation, etc.



Fundamental problems

In the end, these two problems boil down to two fundamental
problems in numerical linear algebra: computing a
matrix-vector product Av or solving a linear system Ax = b.
Here the matrix A could be sparse or dense.

Most nonlinear problems are solved numerically via some
iterative scheme, for example, Newton’s method or
quasi-Newton’s method, where a linearized problem is solved
at each iteration step.

Fast algorithms are also useful in many other situations

Many-body simulation in astrophysics, plasma and accelerator
physics, and molecular dynamics
Stochastic modeling such as Browninan dynamics simulation
Image processing
Data compression in the so-called “Big Data Science”.



Complexity of algorithms

In terms of the input size, computer scientists usually divide
the algorithms (or, the problems) into several groups: P -
solvable in ≤ polynomial time; NP - solvable in ≤
non-deterministic polynomial time (this is a very technical
definition) (for example: the game Tetris); EXP - solvable in
≤ exponential time (for example, the chess game); R -
solvable in finite time; and problems that are not solvable in
finite time. It is easy to show that most problems are actually
not solvable in finite time by the current computer, which
essentially relies on the facts that the set of natural number is
countable, while the set of real numbers is uncountable.

However, even P algorithms are simply not good enough for
the purpose of scientific computing. For example, an N3

algorithm with N = 106 is impractical for laptops.



The need of fast algorithms

Without proper algorithms, even the most powerful
supercomputer in the world is not very useful!

The faster the computer, the more important the speed
of algorithms. - Lloyd N. Trefethen in his essay “The
Definition of Numerical Analysis” (SIAM News, 1992).

This is because the gap between the size of the problem that
can be solve by a fast (say, O(N)) algorithm and by a slow
(say, O(N3)) algorithm grows even wider as more computing
resouces are available.



How fast are “fast numerical algorithms”?

By “fast”, we usually mean the algorithm has linear (i.e.,
O(N)) or quasi-linear (i.e., O(N logN) or O(N logαN))
complexity with N the size of the input of the problem.

Here we only use the number of floating point operations
(flops) or steps to measure the computational cost (or time).

For matrix-vector product or solving a linear system, fast
algorithms automatically imply that the storage cost is no
greater than O(N) or O(N logαN) since otherwise reading
the data will take more time.

This means that we do not construct the matrix explicitly!



Changes of the computer hardware structure

The well-known Moore’s law has more or less reached its
physical limit. The speed of a single CPU has not been
increased significantly in the last ten years or so. Modern
powerful computers are built via parallel computers,
multicores, and GPUs.

This means that the design or the re-design (i.e., the
parallelization) of numerical algorithms for modern
heterogeneous computers has become increasingly important.
More on this in the afternoon talk by Andreas.



Very brief introduction of the following fast algorithms

The fast multipole method (FMM) for nonoscillaroty kernels

Fast direct solvers

Resursive skeletonization factorization

NUFFT - Nonuniform fast Fourier transform

The butterfly algorithm



Key observations I - exact formulas are not always the best
choice

IEEE floating point numbers and operations are used for most
problems in scientific computing and one always obtains
approximate solution due to floating point arithmetic errors
even if the exact formulas are used.

For a well defined mathematical problem, the accuracy of the
numerical solution depends on the condition number of the
problem and the floating point arithmetic precision (double
precision for almost all scientific computations nowadays).

Our objective is to obtain a numerical solution with any
prescribed accuracy, not the exact solution.

Hence, in many cases direct methods or exact formulas are
not the best choice due to high computational cost or
ill-conditioning associated with them.



Key observations II - low rank property

Many linear operators (or rather, their discretizations) in
applied and computational mathematics have certain
numerical low rank properties. In particular, the kernels of a
wide class of integral operators becomes increasingly smooth
away from the diagonal. That is, the off-diagonal blocks of
the interaction matrix are of low rank regardless the size of
the blocks. The FMM for nonoscillatory kernels utilizes this
type of hierarchical block low-rank structure for the
interaction matrix in a critical way.

For oscillatory kernels treated by the butterfly algorithm,
another type of low rank property is observed. Namely, any
contiguous block of the interaction matrix having constant
product of target and source box sizes has roughly the same
low rank. This is the key observation of the butterfly
algorithm.



The FMM for the high frequency Helmholtz kernel

Original observation by Vladimir Rokhlin - the translation
operators can be diagonalized using FFT.

Low rank observation by Enquist and Ying in their “Fast
directional multilevel algorithms for oscillatory kernels” - the
interaction between a ball of radius r and a well-separated
region has an approximate low rank representation, as long as
the well-separated region belongs to a cone with a spanning
angle of O(1/r) and is at a distance which is at least O(r2)
away from the ball.



Key observations III - recursive algorithmic structure

In order to achieve optimal computational complexity, one
needs to apply the low rank compression recursively.

For fast numerical algorithms, this means one has to build a
tree structure to carry out the low rank compressions in a
multi-level or hierarchical way. Examples include the FMM,
the butterfly algorithm, fast direct solvers, etc.

In fact, many other fast algorithms in computer science are
also recursive. Examples include quick sort, FFT, Strassen’s
algorithms for matrix-matrix multiplication, etc.



The original FMM - Greengard and Rokhlin, JCP 1987

Consider the Coulomb interaction in 2D: given N charges qi at
source locations xi ∈ C (i = 1, · · · ,N). Compute the potential
induced by these charges at M target locations yj ∈ C
(j = 1, · · · ,M).

In other words, compute

uj =
N∑
i=1

qi log(yj − xi ), j = 1, · · · ,M.

In matrix-vector notation, this is equivalent to computing the
product of an M by N matrix with a column vector of length N.



The original FMM

Obviously, direct computation costs M · N flops since the
matrix is dense.

The FMM reduces the computational cost down to O(M + N)
flops excluding the cost of sorting the particles into a tree
structure. If M = N, then it’s a reduction from O(N2) to
O(N).



Key low rank property for well-separated sets
Let’s first consider the simplest case - the sources are well
separated from targets. That is, if the source box BS is a square of
size a centered at x0 that contains all source points xi
(i = 1, · · · ,N) and the target box BT is a square of size b
centered at y0 that contains all source points yi (i = 1, · · · ,M),
then the distance between BS and BT is at least max(a, b).

BS BT



Using Taylor’s theorem, we have

log(y − x) = log(y − x0)−
∞∑
k=1

1

k

(
x − x0

y − x0

)k

Here |xi − x0| ≤
√

2a
2 and |yj − x0| ≥ 3a

2 , thus
∣∣∣ xi−x0
yj−x0

∣∣∣ ≤ √2
3 for

all i = 1, · · · ,N and j = 1, · · · ,M
Therefore, if we truncate the series at k = p, then the error is

at most (
√

2
3 )p. And if we want the error to be less than some

prescribed precision ε, then we should choose p = O(log( 1
ε )).

Note that p is independent of M, N and the size of the box.



Using previous result, we have

uj =
N∑
i=1

qi log(yj − xi )

=
N∑
i=1

qi log(yj − x0)−
N∑
i=1

qi

p∑
k=1

1

k

(
xi − x0

yj − x0

)k

= log(yj − x0)
N∑
i=1

qi

+

p∑
k=1

1

(yj − x0)k
· (−1

k
)

N∑
i=1

qi (xi − x0)k

= log(yj − x0)Φ0 +

p∑
k=1

1

(yj − x0)k
· Φk

(2.25)

where

Φ0 =
N∑
i=1

qi , Φk = −1

k

N∑
i=1

qi (xi − x0)k



This is the so-called multipole expansion for the potential
and we may compute uj for j = 1, · · · ,M in two steps:
Step 1: compute Φk for k = 0, · · · , p, this costs N · p flops.
Step 2: compute uj for j = 1, · · · ,N, this step costs M · p
flops.

In matrix form, it is equivalent to a rank-p factorization of the
interaction matrix A = BC and then calculating Ax by B(Cx).

Altogether, the algorithm costs (M + N) · p = (M + N) log( 1
ε )

flops.



The FMM - general adaptive nonuniform case

In the 25 years period from 1987 to 2012, the FMM has been
extended to speed up the calculation of Ax where the matrix
A has the hierarchical block low-rank structure. In some
literature, these are the so-called H2 or HSS matrices or
simply FMMable matrices.

The algorithmic structure is almost identical. We first build
an adaptive tree with several associated lists, then use M2M
translation operator to compress the far field interactions in
the upward pass, finally use M2L and L2L translation
operators to obtain local expansions for evaluation in the
downward pass.

The downward pass and the translation operators are needed
in order to reduce the complexity from O(N logN) to O(N).



Fast direct solvers

The fast direct solver (FDS) computes an efficient
factorization of the matrix inverse A−1 when A is FMMable or
belongs to H2. For intrinsically 1D problems, the complexity
of FDS is about linear, with the prefactor in the factorization
stage ten times larger than the prefactor in the FMM, but the
prefactor in the apply stage much smaller (10 or 100 times
speed-up than the FMM).

FDS are very useful when the linear system is ill-conditioned
and thus requires many number of iterations when an iterative
solver is used or when one needs to solve the same linear
system many times with different right hand sides.

The original FDS by Martinsson and Rokhlin (2005)
recursively compresses A−1 using the
Sherman-Morrison-Woodbury formula. So also the early work
by Yu Chen on “Fast direct solver for the
Lippmann-Schwinger equation” in Advances in Computational
Mathematics, vol. 16, pp. 175-190, 2002.



Fast direct solvers

For intrinsically 2D problems, FDS has O(N3/2) complexity.
And it has O(N2) complexity for 3D problems.

The algorithmic structure of the FDS by Martinsson and
Rokhlin is even more complicated than the FMM and we will
not discuss it here.



Recursive skeletonization factorization

The original FMM and FDS do not have a multiplicative
factorization. Thus they are not easy to describe using the
language of linear algebra and are fairly difficult to implement.

A very recent work by V. Minden, K. L. Ho, A. Damle, and L.
Ying (preprint, 2016) on ”A recursive skeletonization
factorization based on strong admissibility” presents a unified
approach - the RS-S algorithm for both the FMM and the
FDS.

It factorizes A as a sequence of sparse and low-rank matrices
and achieves linear complexity for A, A−1, and A1/2 in all
dimensions as long as A has the hierarchical block low-rank
property.

As a multiplicative factorization, it is much easier to
understand as we can write down the factorization explicitly in
matrix form. It is also much easier to implement.



Recursive skeletonization factorization

Three building blocks of the RS-S algorithm are block
elimination via Schur complement, interpolative
decomposition, and proxy surfaces.



Interpolative decomposition

Suppose that k , m, and n are positive integers with k ≤ m and
k ≤ n, and A is an m×n matrix, such that the rank of A is at most
k . Then, there exist an m × k matrix B whose columns constitute
a subset of the columns of A, and an k × n matrix P, such that

Am×n = Bm×kPk×n

and
|Pi ,j | ≤ 1

for i = 1, · · · , k, and j = 1, · · · , n.

The decomposition of A into the product of B and P is called
interpolative decomposition (ID) or skeletonization of A.



Interpolative decomposition

Here B is called the column skeleton of A. It is clear that ID is a
special low rank decomposition of the matrix A. The advantage of
ID (as compared with other low rank approximations) is that B is
a submatrix of A and P is well-conditioned. In the setting of the
FMM, this means that the multipole expansion is replaced by
reassigning the charges on a subset of sources.

Similarly, ID can be performed rowwise or in both columns and
rows. Algorithmically, ID is obtained by a procedure which is
essentially pivoted QR factorization. ID has been used extensively
in the construction of fast algorithms such as interpolative FMM,
the butterfly algorithm, and fast direct solvers.



Skeletonization using ID and Schur complement

Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low rank.

Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp

A∗pq

]
≈
[
Aqr

A∗rq

]
Tp, where Tp is an

interpolation matrix with ‖Tp‖ small.

Reorder A =

Ap̃p̃ Ap̃r Ap̃q

Ar p̃ Arr Arq

Aqp̃ Aqr Aqq

, define Q =

 I
−Tp I

I

.

Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Arr Arq

Aqr Aqq

.

Schur complement: R∗pQ
∗
pAQpSp ≈

∗ ∗ Arq

Aqr Aqq

.



A note on Schur complement
Let

A =

Akk Akr

Ark Arr Arq

Aqr Aqq

 .
If Arr is nonsingular, define

R∗k =

 I
−ArkA

−1
rr I

I

 , S∗k =

I −A−1
rr Akr

I
I

 .
Then

R∗kASk =

Akk

∗ Arq

Aqr Aqq


Similar to LDU factorization.

DOFs k have been eliminated, but interactions involving q are
unchanged.



Proxy surfaces

When compressing the far-field interactions, one does not
need to compress the original large matrix blocks with many
target points. Instead, one could replace all these target
points by a fixed number of points on a so-called proxy
surface and compress the interaction between the source
points and these proxy points only in ID. This reduces the
cost of ID to almost constant.

Originally used in Lexing Ying’s PhD thesis (2004) and the
KIFMM paper by Ying, Biros, and Zorin (JCP 2004). It has
become a key algorithmic ingredient in many of fast
algorithms developed by Ying and others.



NUFFT - nonuniform fast Fourier transform

The regular FFT relies on a strict algebraic structure of the
discrete Fourier transform matrix and requires that points be
equispaced in both physical and Fourier domains.

The NUFFTs lift the restriction of the points being equispaced
in physical and/or Fourier domain. There are now many
variants of NUFFTs (see, for example, Dutt and Rokhlin 1993
and 1995, Beylkin 1995, Potts, Steidl, and Tasche 2001,
Fessler and Sutton 2003, Fourmont 2003, Greengard and Lee
2004, Lee and Greengard 2005). All these NUFFTs rely on a
mixture of interpolation and the judicious use of the FFT on
an oversampled grid. However, Dutt and Rokhlin (1993)
seems to be the first one that can achieve arbitrary precision.
We will follow Greengard and Lee (2004) to explain the basic
ideas and computational steps of NUFFTs.



Types of NUFFT

Type 1 NUFFT: given the function values on an irregular grid
in one space, evaluate the discrete Fourier transform on an
equispaced grid in the other space. For instance,

F (k) =
1

N

N−1∑
j=0

fje
−ik·xj , (2.26)

where one needs to evaluate F (k) over an equispaced grid.

Type 2 NUFFT: given the function values on an equispaced
grid in one space, evaluate the discrete Fourier transform on
an irregular grid in the other space.



Types of NUFFT

For instance,

f (xj) =

M/2−1∑
k1=−M/2

M/2−1∑
k2=−M/2

F (k1, k2)e−i(k1,k2)·xj , (2.27)

where xj are irregular grid points in the physical space.

Type 3 NUFFT: the grid points are irregular in both the
physical space and the Fourier domain. For our purpose, we
only need Type 1 and 2 NUFFTs.



Basic idea and algorithmic steps of NUFFT

For simplicity, let us consider the one dimensional type-1
NUFFT defined as follows:

F (k) =
1

N

N−1∑
j=0

fje
−ikxj , k = −M

2
, · · · , M

2
− 1. (2.28)

The first observation is that (2.28) describes the exact Fourier
coefficients of the function

f (x) =
N−1∑
j=0

fjδ(x − xj), (2.29)

viewed as a periodic function on [0, 2π]. Here δ(x) denotes
the Dirac function. It is clearly not well-resolved by a uniform
mesh in x .



Basic idea and algorithmic steps of NUFFT

Let gτ (x) =
∑∞

l=−∞ e−(x−2lπ)2/4τ denote the 1D periodic
heat kernel on [0, 2π]. If we define

fτ (x) = f ∗ gτ (x) =
∫ 2π

0 f (y)gτ (x − y)dy to be the
convolution of f with gτ , then fτ is a 2π-periodic C∞

function and can be well-resolved by a uniform mesh in x
whose spacing is determined by τ .

Its Fourier coefficients Fτ (k) = 1
2π

∫ 2π
0 fτ (x)e−ikxdx can be

computed with high accuracy using the standard FFT on an
oversampled grid.



Basic idea and algorithmic steps of NUFFT

That is,

Fτ (k) ≈ 1

Mr

Mr−1∑
m=0

fτ (2πm/Mr )e−ik2πm/Mr , (2.30)

where

fτ (2πm/Mr ) =
N−1∑
j=0

fjgτ (2πm/Mr − xj). (2.31)

Once the value Fτ (k) are known, an elementary calculation
shows that

F (k) =

√
π

τ
ek

2τFτ (k). (2.32)

This is a direct consequence of the convolution theorem and
the fact that the Fourier transform of gτ is
Gτ (k) =

√
2τe−k

2τ .



Some details of NUFFT

The type-2 NUFFT can be computed simply by reversing the
steps of type-1 NUFFT.

There are some parameters in the algorithm which requires
somewhat involved analysis. To summarize, we use Mr = 2M
and τ = 12/M2, and Gaussian spreading of each source to the
nearest 24 grid points yields about 12 digits accuracy. With
τ = 6/M2, Gaussian spreading of each source to the nearest
12 grid points yields about 6 digits of accuracy.



The butterfly algorithm

The butterfly algorithm speeds up the computation of

φi (xi ) =
N∑
j=1

K (xi , yj)q(yj), i = 1, · · · ,M,

where the kernel function K is highly oscillatory. A typical example
is the discrete Fourier integral operator

u(x) =
∑
k∈Ω

e2πiΦ(x ,k)f (k), x ∈ X ,

where {f (k), k ∈ Ω} is a given input, {u(x), x ∈ X} is the
output, and Φ is assumed to be smooth in (x , k) for k 6= 0 (for
example, Φ(x , k) = x · k . Since the kernel is highly oscillatory, it is
not an HSS or H2 matrix.



Complementary low-rank property

However, many oscillatory kernels satisfy the so-called
complementary low-rank property. That is, the interaction rank
between a target box A and a source box B is bounded
polynomially in log 1

ε if size(A) · size(B) is constant.
Algorithmically, suppose that A is a N × N matrix, we build a tree
Tx for targets (row indices) and another tree Tn for sources
(column indices) of depth L = O(logN). Then for any level l , any
node A in Tx at level l , and any node B in TΩ at level L− l , the
interaction matrix KA,B has bounded rank!



Complementary low-rank property

In one dimensional cases, the condition can be restated as follows:

Any contiguous submatrix of size m × n has nearly constant low
rank depending only on m · n.



Sketch of the original butterfly algorithm

Step 1: Construct the quadtrees TT and TS for the target box
and the source box, respectively.

Step 2: Recursive hierachical compression For l = 1, · · · , L, for
each pair of boxes on the level l of TT and level L− l of TS , use
ID to compress the interactions between these pairs.

Step 3: Evaluate the matrix-vector product using the compressed
form of the matrix.

The algorithmic procedure is similar to that of the FFT. The
algorithm is still under rapid development.



Computational cost

Two stages:

1 Precomputation stage (offline stage) - obtain an efficient
factorization of the interaction matrix.

2 Apply or evaluation stage (online stage) - use the factorization
to evaluate matrix-vector product.

The apply stage has O(N logN) cost since usually there are
O(logN) factors with each factor having O(N) nonzero entries.



Computational cost of the factorization stage

O(N2) for the Helmholtz kernel by Michielssen and Borg,
IEEE Trans. Antennas and Propagation, 1996.

O(N2) for the butterfly algorithm by O’Neil and Rokhlin
(2007) for various transforms of special functions - Bessel
transform, Legendre transform, Fourier transform, etc.

O(N logN) for Fourier-Integral Operators (Ying, 2009;
Candes, Demanet and Ying, 2009; Demanet, Ferrara,
Maxwell, Poulson, Ying, 2012, etc.).

O(N
3
2 ) for the new butterfly factorization starting from the

midlevel by Li, Yang, Martin, Ho and Ying (2015).

O(N logN) for the so-called interpolative butterfly
factorization by Y. Li and H. Yang (2016).



Software packages

George Biros’ group
http://padas.ices.utexas.edu/software/

Leslie Greengard’s group
http://www.cims.nyu.edu/cmcl/software.html

Ken Ho’s FLAM code
https://github.com/klho/FLAM

Andreas Klöckner
https://github.com/inducer

Lexing Ying’s group
http://web.stanford.edu/~lexing/software/index.html

http://padas.ices.utexas.edu/software/
http://www.cims.nyu.edu/cmcl/software.html
https://github.com/klho/FLAM
https://github.com/inducer
http://web.stanford.edu/~lexing/software/index.html


Predictions by Lloyd N. Trefethen

Multipole methods and their descedants will be ubiquitous.
- Lloyd N. Trefethen in his essay ”Predictions for Scientific

Computing Fifty Years From Now” (Mathematics Today, 2000)



Part III. The Hadamard Conjecture



History of the problem

In 1908, Hadamard conjectured that the Green’s function for
the clamped plate problem, or mathematically, the first
Dirichlet problem of the biharmonic equation on a convex
domain is nonnegative.

However, after 1949 numerous counterexamples disproved the
positivity conjecture of Hadamard. The first result in this
direction came by Duffin (1949), who showed that the Green
function changes sign on a long rectangle.

Garabedian then showed change of sign of the Green function
in ellipses with ratio of half axes ≈ 1.6 (1951).

Sign change is also proven by Coffman-Duffin (1980) in any
bounded domain containing a corner, the angle of which is
not too large. Their arguments are based on previous results
by Osher and Seif (1973) and cover, in particular, rectangles.



The Hadamard conjecture

This is an extremely challenging problem in analysis!

The fundamental difficulty lies on the facts that there is no
maximum principle for the biharmonic equation and that the
conjecture is about the pointwise estimate of Green’s function.

In this workshop, we hope that we could provide some insights
about positive (or sufficient) conditions for the nonnegativity
of Green’s function through numerical experiments, which is
in perfect agreement with the objective of the ICERM (The
Institute for Computational and Experimental Research in
Mathematics) - probably the only mathematical institute with
the word “experimental” on it.



Mathematical formulation

The Green’s function for the clamped plate problem satisfies the
following conditions:

∆2GD(x , y) = δ(y) in D,
GD = 0 on ∂D,
∂GD
∂n = 0 on ∂D.

That is, it is the fundamental solution of the first kind Dirichlet
problem of the biharmonic equation.



Mathematical formulation

Let us write Gd(x , y) = u(x , y) + G (x , y) with
G (x , y) = 1

8π |x − y |2 ln |x − y | the Green’s function for the
biharmonic operator in free space. Then u satisfies

∆2u(x , y) = 0 in D,
u = −G (x , y) := f1(x) on ∂D,
∂u
∂nx

= − ∂G
∂nx

:= f2(x) on ∂D.



SKIE formulation

The usual single and double layer potentials do not work for
this problem.

Instead, we try to represent the solution via a sum of two
multiple layer potentials

u(x) =

∫
S

[K1(x , y)σ1(y) + K2(x , y)σ2(y)]dsy ,

where Ki and σi (i = 1, 2) are integral kernels (to be
determined) and unknown densities, respectively.

Since u has to satisfy the biharmonic equation for x ∈ D, the
kernels Ki (i = 1, 2) have to be a linear combination of G and
its partial derivatives.



SKIE formulation

u also needs to satisfy two boundary conditions. It is well known
that layer potentials may experience certain jumps across the
boundary. Thus, we denote

K11(x , y) = K1(x , y)

K12(x , y) = K2(x , y)

K21(x , y) =
∂K1(x , y)

∂nx

K22(x , y) =
∂K2(x , y)

∂nx

(3.33)



SKIE formulation

And assume that the jump relation for each associated layer
potential is as follows:

lim
ε→0+

∫
S
Kij(x − εnx , y)σj(y)dsy = Dijσj(x)

+

∫
S
Kij(x , y)σj(y)dsy , x ∈ S , i , j = 1, 2,

(3.34)

where Dij are to be determined.



SKIE formulation

With this assumption, the boundary conditions lead to the
following system of integral equations in σi (i = 1, 2)(

D11 D12

D21 D22

)(
σ1(x)
σ2(x)

)
+∫

S

(
K11(x , y) K12(x , y)
K21(x , y) K22(x , y)

)(
σ1(y)
σ2(y)

)
dsy =

(
f1(x)
f2(x)

)
.



SKIE formulation

To make the above system second kind, we must require that the

block diagonal matrix D =

(
D11 D12

D21 D22

)
has nonzero determinant

and the integral operators Kij are all compact.



SKIE formulation

The following choice of K1 and K2 would satify all requirements:

K1(x , y) = −2Gnnn(x , y) + 3(∆G )n(x , y) (3.35)

K2(x , y) = −Gnn(x , y) + Gττ (x , y) (3.36)

The key here is to carry out some local singularity analysis to make
sure that D11 6= 0 and K11, K21 are both compact.



SKIE formulation

With this selection of the kernels, we obtain the following system
of second kind integral equations:

D(x)σ(x) +

∫
S
K (x , y)σ(y)dsy = f (x), (3.37)

where

D(x) =

(
1
2 0

−κ(x) 1
2

)
, σ(x) =

(
σ1(x)
σ2(x)

)
, f (x) =

(
f1(x)
f2(x)

)
,

(3.38)
and κ(x) is the curvatures of ∂D at x .



SKIE formulation

This is the formulation by Peter Faskas in his PhD thesis
(1989).

It has been extended to three dimensional problems by Jiang,
Ren, Tsuji, and Ying in 2011 and to modified biharmonic
equation by Jiang, Kropinski, and Quaife in 2013 with slightly
different choices for K2.

See also Manas Rachh’s PhD thesis (Courant Institute, 2015)
about another SKIE formulation using classical Goursat
functions for 2D problems. Note that it cannot be extended
to higher dimensional problems or other 4th order PDEs since
it is based on complex analysis.



Numerical difficulties

There is a severe cancellation error. The Green’s function in
free space is O(1) as long as the target is away from the
source, but the Green’s function for the domain is
proportional to O(d2) with d the distance from the source (or
the target) to the boundary since GD = ∂GD

∂ν = 0.

And the first sign change usually occurs when the target and
source points are very close to the boundary or right on the
boundary in the limiting case.

Hence, we need high-order quadrature for singular or nearly
singular integrals in order to capture the sign change
accurately.

Also, we need fast algorithms since GD is a function of x and
y . Even a linear algorithm would require O(N4) work if we
need to sweep the entire domain. Here N is the total number
of discretization points on the boundary. We then need to
repeat this calculation for many geometries!



Possible projects

Implement parallel FMM-accelerated QBX scheme with
arbitrary precision. More on the QBX scheme in the afternoon
talk by Andreas.

Numerical experiments on ellipses to prove/disprove that
Garabedian’s condition is sufficient.

Numerical experiments on arbitrary smooth convex domains
with a given ratio κmax to κmin.

Numerical experiments on ellipsoids in 3D as Andreas’ code is
dimension insensitive.
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