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* Dislocations: line defects in crystals
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* Atomic description

* Continuum description

u = (u,,u,,us,) is the elastic displacement
' o vector (multi-valued)
dislocation line 7y L is any close contour enclosing
' dislocation line
% da=Db

L :
b is the Burgers vector

*Dislocations:Primary carriers of plastic deformation

* Motions of dislocations include glide and climb a
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Dislocation glide

* Dislocations mainly move by glide at not very high temperatures.

- Motion within the slip plane (containing the dislocation and its
Burgers vector).

* Conservative motion.
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Dislocation climb

 Absorbing and emitting vacancies/interstitials.

* Non-conservative motion.
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Dislocation climb plays important roles in the plastic deformation of

crystalline materials at high temperature, e.g. in dislocation creep. -
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Peach-Koehler force

f . b b : the Burger's vector,
- ( o - )X é: ¢ : the dislocation line direction,

o : the stress tensor.

Glide velocity of dislocations

V = M . f M: mobility




 Vacancy diffusion assisted dislocation climb, follows
vacancy diffusion equation (in equilibrium when

climb is slow) p
C
Y V- (D,Vc)

 Equilibrium condition near dislocation (boundary
condition depending on the climb PK force)

cqg = coe i fa=1-(§ xb/b.) f.: climb PK force

b_=b sin 8
* Climb velocity is associated with
B: angle between dislocation line
vacancy flux into the dislocation direction € and the Burgers vector b
o — 27rqyD, Oc
b. On ”

y v __\
Hirth & Lothe, Theory of Dislocations, 1982.
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Pipe diffusion

*Most earlier work focuses on vacancy diffusion in
the bulk. The boundary condition is Dirichlet
condition.

*Real dislocations may not be perfect sources or
sinks, implying that both climb and pipe diffusion
could cooperate with jog dynamics.
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A mesoscopic dislocation dynamics model for vacancy-

assisted dislocation climb from stochastic model on the
atomistic scale

Incorporates the following microscopic mechanisms

vacancy

(i) Bulk vacancy diffusion;
(ii) Vacancy exchange dynamics across
bulk and dislocation core;
(iii) Vacancy pipe diffusion along the
dislocation line;
- (iv) Vacancy attachment-detachment
kinetics at jogs leading to dislocation climb.
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Model assumptions

\ 4

(L,j,q)

(1) A vacancy is only allowed to move along the x, v, z
axes directions and inverse directions.

(2) The jogs are noninteracting and have low density,
i.e. vacancy at most has one direction to jump into
the jog . -
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Model assumptions: vacancy migration
probabilities in different lattice sites

Je1£2

4

: e -
vacancy ,j;f__, C; = Cp€ bkT

Equilibrium vacancy
concentration at a jog site
-
where ¢y = e ir

dislocaty

X . . .
reference equilibrium vacancy
» L3 L L L
: b concentration in the dislocation core
i E’Lr o o

[, = FEQ__;;T Bulk diffusion

10, —E Pipe diffusion
['. =1 e %7 P

Cc—11

| i _—E ° ° o 3
' ok, = FE_PE T Diffusion from core to bulk , the same in jog -
r - A *'

=

T, = F‘E_Ce‘ E°— Diffusion from bulk to core, the same in jog Ll JJ
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For vacancies along the dislocation line and near
the jog:
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For vacancies in the bulk and near the jog:
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Stochastic motion of a jog depends on the stochastic
migration behavior of vacancies nearest to it

Jog velocity:

Viog = Db + €0 1) + Tobn (65 + 0 + 0+ )

1,7,g—1 il_rq .7—1.q9

—(2T,b + AT bdoky)c.




The jog dynamics model

dislocation

~

¢; = D,(cy + cyy + ¢;;),  in the bulk,
dc’ 1 :
—_ = (CV — ka(’) . //
an l‘;b F=rg /Zm+2 .
c’ =—c | jog 8
L 0 Ir=roo> bulk region
r ) How to
¢f = Doct + 2| [ ¢"dl — kye¢|. on the dislocation.Solve therr
¢ by \ 2mrd Jr=rq
together?
fa1£2 : |
¢ = cle T / At a jog ly, = bl,
L I=Im
| Adaption for general
_,Uj(;z) _ Z i n° P E/ jondl dislocation core radius
S=+,— = Z=2np /
2m DL Dy y _Ja® .
= D[e(5) — ese)] + TS ( Cdl — ke )




The dislocation dynamics model

(¢, = D, (c,, + Cyy + ¢;z), 1n the bulk,
0 | dislocation core
S a_c — Z_(C - Cd) s t
n ¢ r=ry
C = Cxo |r=rc,oa
- rq i
2rnryD, (1 d*c§
py = 2 f cdl —c;| + Dbl
bl¢ 2:rrd r=ry d52
] d2c§
— jnd + D.b—<
r=ryg C]S2

dislocation

bulk region

10
c;(2) = cpe  bkT

k,cy = ¢

| @
cj(z) = c5e bkt
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* Dislocation climb velocities of some special cases

* Climb velocity of a straight edge dislocation
27D,

[
b(lnrﬁ + i’]
Fd Fd

Comparing the classical climb velocity formula in J.P. Hirth & J. Lothe,
Theory of Dislocations, 1968

Vel = (Cco o Cd)-

Difference:

An extra term 7 is due to the imperfect sink/source, from jog

structure and pipe diffusion. -
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Prismatic loop translation by pipe diffusion at low temperature

d*c§ y

final dislocation loop

‘ fe1 ()2
dS ci(s) = cye bkl

dt initial dislocation loop

Area of the loop S is unchanged by the translation due to
the pipe diffusion [Kroupa & Price, Phil. Mag. 1961]

Gives a quantitative understanding of the translation of
prismatic loops due to pipe diffusion
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Climb velocity for prismatic loop translation

d*c§ . o Ja ()L
T where ¢;(s) = cye / bkT
S

Vel =— D{: b

fcl — floops —|_fex
— bo_SB—I_feX

2 —_— —_
- ub % G 3 dy o /—a 3 d + feX
nl=v) Jo((w—aP+ @y -y)?? ~ (r—21)+ (y—p)?)?

C for all dislocation loops

Self stress of the loop C;: from (x, y) on C;4
Stress from other loop C,: from (x, y) on C,

bT < —~ bT C >
C, Cz




Simulation results for prismatic loop translation at not very low
temperature (800K). |
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2. under the stress field from an fixed infinite sxtraight edge dislocation
(xo = 360b, zy = 500 for left fig; x, = 305b; zy = 305b for right fig)

300 ‘

200

100

0,

-100 |

-200

-300 ¢t




3. self climb of two prismatic loops in the same habit plane
driven by loop — loop interaction
R, =300b
R, = 150b
d= 100b(the distance between the closest points of two loops)




summary

- An atomistic model on the microscopic scale for
dislocation climb is developed.

-Model incorporates the pipe diffusion and bulk
diffusion.

-Jog dynamics model is derived from the
atomistic model, which consists of pipe diffusion
equation and bulk diffusion equation.

- Dislocation dynamics model for dislocation climb
IS obtained by further upscaling in space and
time from the jog dynamics model in the fast
pipe diffusion limit.

-When the bulk diffusion is not very significant, &
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the effect of pipe diffusion can be captured LWJ
quantitatively, e.q. for the translation of a
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