Harmonic pinnacles in the Discrete Gaussian model Eyal Lubetzky, New York University The 2D Discrete Gaussian is the crystal surface model which gives each height function $\eta\colon Z^2\to Z$ a probability proportional to $\exp[-\beta H(\eta)]$, where β is the inverse-temperature and $H(\eta)=\sum(\eta_x-\eta_y)^2$ sums over nearest-neighbor bonds. We consider the model at large fixed β , where it is flat unlike its continuous analog (the Gaussian Free Field). We first establish that the maximum height in an L×L box with 0 boundary conditions concentrates on two integers M,M+1 with M \sim [(2/ π β) logL loglogL]^{1/2}. The key is a large deviation estimate for the height at the origin in Z^2, dominated by "harmonic pinnacles", integer approximations of a harmonic variational problem. Second, in this model conditioned on $\eta \geq 0$ (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H,H+1 where H \sim M/ $\sqrt{2}$. This in particular pins down the asymptotics, and corrects the order, in results of Bricmont, El-Mellouki and Fröhlich (1986). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices. Joint work with Fabio Martinelli and Allan Sly.