Identity-Based Encryption: A 30-Minute Tour

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute, Kolkata
India
palash@isical.ac.in
A brief overview of IBE.
Some constructions.
Some issues.
Bob sends a message to Alice.
Identity-Based Encryption

Identity-Based Encryption

Solutions:

 - Described an identity-based key agreement scheme.
- Cocks’ solution was based on quadratic residues.
- SOK and BF were based on bilinear maps.
- BF provided an appropriate security model.
- The BF work spurred a great deal of later research.
Identity-Based Encryption: Security Model

<table>
<thead>
<tr>
<th>Adversary</th>
<th>Simulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set-Up</td>
<td>PP generate PP, msk</td>
</tr>
<tr>
<td>Queries–I</td>
<td>id</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Challenge</td>
<td>(M_0, M_1, id^*)</td>
</tr>
<tr>
<td>Queries–II</td>
<td>id</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Guess</td>
<td>(\gamma')</td>
</tr>
</tbody>
</table>

Restricted Models:
- CPA-secure: Ciphertext queries not allowed.
- Selective-identity: The challenge identity id^* is to be provided by the adversary even before receiving the PP.
Construction Approaches

- Based on quadratic residues.
- Based on lattices.
- Based on bilinear pairings of elliptic curve groups.
Cocks’ IBE

Setting: \(N = pq; \)

\(J(N) \): set of elements with Jacobi symbol 1 modulo \(N; \)

\(QR(N) \): set of quadratic residues modulo \(N. \)
Cocks’ IBE

Setting: \(N = pq; \)

- \(J(N) \): set of elements with Jacobi symbol 1 modulo \(N; \)
- \(QR(N) \): set of quadratic residues modulo \(N. \)

Public Parameters.

- \(N; u \leftarrow J(N) \setminus QR(N); \)
 - (\(u \) is a random pseudo-square;)
- hash function \(H() \) which maps identities into \(J(N). \)

Master Secret Key: \(p \) and \(q. \)
Cocks’ IBE

Setting: $N = pq$;

$J(N)$: set of elements with Jacobi symbol 1 modulo N;

$QR(N)$: set of quadratic residues modulo N.

Public Parameters.

$N; \ u \xleftarrow{\$} J(N) \setminus QR(N)$;

$(u$ is a random pseudo-square;)

hash function $H()$ which maps identities into $J(N)$.

Master Secret Key: p and q.

Key Gen: identity id.

$R = H(\text{id}); \ r = \sqrt{R}$ or \sqrt{uR} according as R is square or not;

$d_{\text{id}} = r$.
Cocks’ IBE (contd.)

Encryption: bit m, identity id.
- $R = H(id)$; $t_0, t_1 \leftarrow \mathbb{Z}_N$;
- compute $d_a = (t_a^2 + u^a R)/t_a$ and $c_a = (-1)^m \cdot (\frac{t_a}{N})$;
- ciphertext: $((d_0, c_0), (d_1, c_1))$.

Decryption: ciphertext $((d_0, c_0), (d_1, c_1))$, identity id; $d_{id} = r$:
- $R = H(id)$; set $a \in \{0, 1\}$ such that $r^2 = u^a R$;
- set $g = d_a + 2r$; (note $g = \left(\frac{(t_a+r)^2}{t_a}\right)$ and so, $\left(\frac{g}{N}\right) = \left(\frac{t_a}{N}\right)$);
- compute $(-1)^m$ to be $c_a \cdot \left(\frac{g}{N}\right)$.
Cocks’ IBE: Discussion

- Ciphertext expansion is large; efficiency not good.
- Boneh, Gentry and Hamburg (2007) obtained improved space efficiency by reusing randomness; but, encryption and decryption efficiencies are worse.
- Jhanwar and Barua (2008) consider the problem of improving efficiency.
Ciphertext expansion is large; efficiency not good.

Boneh, Gentry and Hamburg (2007) obtained improved space efficiency by reusing randomness; but, encryption and decryption efficiencies are worse.

Jhanwar and Barua (2008) consider the problem of improving efficiency.

This approach currently does not lead to practical schemes.
Lattice-Based Approach

- Based on a technique called efficient Pre-Image Sampling.
 - This technique naturally leads to a signature scheme.
 - By considering the decryption key corresponding to an identity to be the PKG’s signature on the identity (cf. Naor) suggests an IBE scheme.

- Security is based on the hardness of the Learning With Errors (LWE) problem.

- Later work have improved efficiency and provided constructions of hierarchical IBE (HIBE) schemes.
Motivation:

- Multi-precision arithmetic not required;
- Security based on the hardness of worst-case instance;
- No known quantum algorithm for solving lattice problems.
Motivation:

- Multi-precision arithmetic not required;
- Security based on the hardness of worst-case instance;
- No known quantum algorithm for solving lattice problems.
- These apply to all lattice problems and are not specific to lattice-based IBE.
Lattice-Based Approach: Pros and Cons

Motivation:
- Multi-precision arithmetic not required;
- Security based on the hardness of worst-case instance;
- No known quantum algorithm for solving lattice problems.
- These apply to all lattice problems and are not specific to lattice-based IBE.

Cons:
- The sizes of keys and ciphertexts are far too large compared to pairing-based schemes.
Pairing

\[e : G_1 \times G_2 \rightarrow G_T. \]

- \(G_1 \) and \(G_2 \) are sub-groups of points on an elliptic curve; \(G_T \) is a sub-group of the multiplicative group of a finite field.

Types of pairings:
- **Type-1**: \(G_1 = G_2 \) (symmetric pairing).
- **Type-2**: An efficiently computable isomorphism from \(G_2 \) to \(G_1 \) is known.
- **Type-3**: There is no known efficiently computable isomorphism from \(G_2 \) to \(G_1 \) (or vice versa).

Type-3 pairings are the fastest to compute and provide the most compact parameter sizes.
Boneh-Franklin IBE

- **Setup:** \(G_1 = \langle P \rangle, s \leftarrow \mathbb{Z}_p, Q = sP; \)
 \(PP = (P, Q, H_1(), H_2()) \), msk = s.

- **Key-Gen:** Given id, compute \(Q_{id} = H_1(id); d_{id} = sQ_{id}. \)

- **Encrypt:** Choose \(r \leftarrow \mathbb{Z}_p; C = (rP, M \oplus H_2(e(Q, Q_{id})^r)) \)

- **Decrypt:** Given \(C = (U, V) \) and \(d_{id} \) compute \(V \oplus H_2(e(U, d_{id})) = M. \)
Boneh-Franklin IBE

- **Setup:** $\mathbb{G}_1 = \langle P \rangle$, $s \leftarrow \mathbb{Z}_p$, $Q = sP$;
 $PP = (P, Q, H_1(), H_2())$, $msk = s$.
- **Key-Gen:** Given id, compute $Q_{id} = H_1(id)$; $d_{id} = sQ_{id}$.
- **Encrypt:** Choose $r \leftarrow \mathbb{Z}_p$; $C = (rP, M \oplus H_2(e(Q, Q_{id})^r))$
- **Decrypt:** Given $C = (U, V)$ and d_{id} compute
 $V \oplus H_2(e(U, d_{id})) = M$.

Correctness:

$$e(U, d_{ID}) = e(rP, sQ_{ID}) = e(sP, Q_{ID})^r = e(Q, Q_{ID})^r.$$
Boneh-Franklin IBE

- **Setup:** \(\mathbb{G}_1 = \langle P \rangle, s \leftarrow \mathbb{Z}_p, Q = sP; \)
 \[\text{PP} = (P, Q, H_1(), H_2()), \text{msk} = s. \]
- **Key-Gen:** Given id, compute \(Q_{id} = H_1(\text{id}); d_{id} = sQ_{id}. \)
- **Encrypt:** Choose \(r \leftarrow \mathbb{Z}_p; C = (rP, M \oplus H_2(e(Q, Q_{id})^r)) \)
- **Decrypt:** Given \(C = (U, V) \) and \(d_{id} \) compute
 \[V \oplus H_2(e(U, d_{id})) = M. \]

Correctness:

\[e(U, d_{ID}) = e(rP, sQ_{ID}) = e(sP, Q_{ID})^r = e(Q, Q_{ID})^r. \]

The scheme is CPA-secure; can be converted to CCA-secure using standard techniques such as the Fujisaki-Okamoto conversion.
Pros:
- Simple, elegant, efficient, compact, ...
- Leads naturally to signature scheme, HIBE and other primitives.
- Best known practical attack: Solve DL in G_1 or G_2.
BF-IBE: Discussion

Pros:
- Simple, elegant, efficient, compact, ...
- Leads naturally to signature scheme, HIBE and other primitives.
- Best known practical attack: Solve DL in G_1 or G_2.

Cons:
- Security argument is based on random oracles.
- Security reduction to the Decisional Bilinear Diffie-Hellman (DBDH) problem is not tight.

- Selective-id secure.
- Introduced the so-called “commutative blinding” framework and algebraic techniques to handle key-extraction queries.
- Described using Type-1 pairings; can be easily modified to Type-3 pairings.
- Extends easily to HIBE.
- Later used by Boyen-Mei-Waters to convert CPA-secure pairing-based schemes to CCA-secure schemes.
Waters (2005):

- Adaptive-id secure without random oracles.
- Builds on BB-IBE1 and another work by Boneh and Boyen.
- Public parameter size rather large (≈ 160 EC points for 80-bit security).
 - Independent follow up work by Naccache (2005) and Chatterjee-Sarkar (2005) showed how to reduce the PP size; trade-off is a looser security reduction.
- Original description in the Type-1 setting.
 - Converted to Type-2 setting by Bellare and Ristenpart (2009).
 - Converted to Type-3 setting by Chatterjee and Sarkar (2010).
- Security analysis introduced a technique called artificial abort.
 - Later analysis by Bellare-Ristenpart showed how to avoid artificial abort, but, at the cost of losing tightness.
Gentry (2006):

- Adaptive-id secure, no random oracles, tight reduction, efficient.
- But, based on the hardness of a non-static assumption, i.e., the number of elements in the instance depends on the number of queries made by the adversary.
Waters (2009):

- Introduces a new technique called dual-system encryption.
- Adaptive-id secure, no random oracles, standard (static) assumption.
- Constant size public parameters.
 - For Waters (2005) and its variants the size of the PP asymptotically grows with the security parameter.
- Extends to HIBE and BE schemes.
- Uses the Type-1 setting.
 - Simplification and conversion to Type-3 setting by Ramanna-Chatterjee-Sarkar (2011).
Some Important Pairing-Based IBE Schemes

Waters (2009):
- Introduces a new technique called dual-system encryption.
- Adaptive-id secure, no random oracles, standard (static) assumption.
- Constant size public parameters.
 - For Waters (2005) and its variants the size of the PP asymptotically grows with the security parameter.
- Extends to HIBE and BE schemes.
- Uses the Type-1 setting.
 - Simplification and conversion to Type-3 setting by Ramanna-Chatterjee-Sarkar (2011).

Lewko-Waters (2010):
- Dual-system based IBE; extends to constant-size ciphertext HIBE.
- Using pairing over composite order groups and also Type-3 setting.
 - An improved variant in the Type-3 setting (coming).
Obtain an IBE scheme with the following properties.

- Adaptive-id secure.
- No random oracles.
- Standard hardness assumptions.
- (Efficient – constant size parameters; constant number of scalar multiplications, pairings; ...)
- *Tight security reduction.*
Obtain an IBE scheme with the following properties.

- Adaptive-id secure.
- No random oracles.
- Standard hardness assumptions.
- (Efficient – constant size parameters; constant number of scalar multiplications, pairings; ...)
- *Tight security reduction.*

Or show that this cannot be done.
Which IBE scheme should I use?
Secure and Efficient IBE: A Practical Issue

Which IBE scheme should I use?

- QR, lattice-based or pairing-based?
Which IBE scheme should I use?

- QR, lattice-based or pairing-based?
- For pairing-based schemes, the best known attack on all proposed schemes is to solve DL. So, do I use BF?
Which IBE scheme should I use?

- QR, lattice-based or pairing-based?
- For pairing-based schemes, the best known attack on all proposed schemes is to solve DL. So, do I use BF?
- For pairing-based schemes, should I care about using Type-1 versus Type-3 pairings.
 - From a security point of view, is the use of Type-3 pairing weaker because of the assumption that isomorphisms between \mathbb{G}_1 and \mathbb{G}_2 cannot be computed?
Which IBE scheme should I use?

- QR, lattice-based or pairing-based?
- For pairing-based schemes, the best known attack on all proposed schemes is to solve DL. So, do I use BF?
- For pairing-based schemes, should I care about using Type-1 versus Type-3 pairings.
 - From a security point of view, is the use of Type-3 pairing weaker because of the assumption that isomorphisms between G_1 and G_2 cannot be computed?
- Should I care about security reductions? If so, then
 - Should I care about selective-id versus adaptive-id models?
 - Should I care about the underlying assumptions? Should I care about static versus non-static assumptions? Among static assumptions, should I care about standard versus non-standard assumptions?
 - Should I care about the tightness of reduction?
Thank you for your attention!