Affine Deligne-Lusztig Varieties, Newton Polygons, and Quantum Schubert Calculus

Elizabeth Beazley
Haverford College

Introduction for ICERM’s Special Semester on “Automorphic Forms, Combinatorial Representation Theory, and Multiple Dirichlet Series”

January 29, 2013
Affine Deligne-Lusztig Varieties

- Let $F = \overline{\mathbb{F}}_q((t)) \supset \mathcal{O} = \overline{\mathbb{F}}_q[[t]]$. The Frobenius σ acts on coefficients by $\sigma(\sum a_i t^i) = \sum a_i^q t^i$.
- Let $G = SL_n(F) \supset B =$ upper triangulars $\supset T =$ diagonals.

- The Iwahori subgroup $I = \begin{pmatrix} O \times & \ldots & O \\ \vdots & \ddots & \vdots \\ tO & \ldots & O^{\times} \end{pmatrix}$.

- The Weyl group $W = S_n$ and the affine Weyl group $\tilde{W} = \tilde{S}_n$.
- The affine Bruhat decomposition says that $G = \bigsqcup_{x \in \tilde{W}} IxI$.

- The affine Deligne-Lusztig variety associated to a fixed $x \in \tilde{W}$ and $b \in G$ is defined to be
 \[X_x(b) = \{ g \in G/I \mid g^{-1}b\sigma(g) \in IxI \}. \]

- Motivated by study of Shimura varieties; the geometry of ADLVs is governed by subtle combinatorics of \tilde{W}.
- Fix an element $b \in G$. We can associate to b a *Newton polygon* $\nu(b)$ in the following manner:

 - Compute a σ-twisted version of the characteristic poly
 - Plot the valuations of each coefficient in this polynomial
 - Take the upper convex hull

- **Theorem** (Kottwitz): The set $\mathcal{N}(G) = \{\nu(g) \mid g \in G\}$ indexes σ-twisted conjugacy classes in G.

- To study affine Deligne-Lusztig varieties, we can instead fix an $x \in \tilde{W}$ and study the set

 $$\mathcal{N}(G)_x = \{\nu(g) \mid g \in IxI\}.$$

- The set $\mathcal{N}(G)_x$ is a *partially ordered set*, and it contains a unique maximal and minimal element.

- Many interesting open questions about this poset remain!
- The *quantum cohomology ring* of the complex complete flag variety $X = SL_n(\mathbb{C})/B$ equals

$$QH^*(X) = H^*(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q_1, \ldots, q_{n-1}].$$

- As a $\mathbb{Z}[q_1, \ldots, q_{n-1}]$-module, $QH^*(X)$ has a basis of *Schubert classes* σ_w where $w \in W$.

- The main problem in modern quantum Schubert calculus is to explicitly compute the products $\sigma_u \ast \sigma_v = \sum_{w,d} c_{u,v}^{w,d} q^d \sigma_w$ by finding non-recursive, positive combinatorial formulas for the coefficients $c_{u,v}^{w,d}$ and monomials q^d.

- **The Curious Connection:** The unique maximal element in $\mathcal{N}(G)_x$ and the unique minimal monomial q^d in these quantum products are governed by precisely the same combinatorics!
- The combinatorics of the Bruhat-Tits building and, more specifically, of the quantum Bruhat graph is a common tool. Here is the quantum Bruhat graph for S_3:

![Quantum Bruhat Graph](image)

- **The Key Point:** Paths in the quantum Bruhat graph correspond to saturated chains in affine Bruhat order.
- This observation is also fundamental in the work of Schilling et al on affine crystals and Macdonald polynomials.