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1. ILLUSTRATIVE EXAMPLES

(1) Numerically approximate the solutions of f(x) = x5 − x+ 1 = 0.

(2) The eigenvalue-eigenvector problem for a matrix A ∈ Cn×n is naturally 2−homogeneous
defined by

f(λ, v) = Av − λv = 0 where (λ, v) ∈ C× Pn−1.
• Show that the 2−homogeneous Bézout bound for f is n.
• Utilize a 2−homogeneous start system to solve the eigenvalue-eigenvector problem

for the following matrices:

A1 =

[
2 3
4 5

]
, A2 =

[
−2 4
−4 6

]
, A3 =


6 2 −4 2
−6 −2 8 −6
−2 −1 4 −1
−2 0 0 4

.
Interpret the solutions in terms of algebraic and geometric multiplicities.

(3) Setup a parameter homotopy for

f(x; p) =

[
x21 − (p1 + p2)x1 + p1p2
(x1 − p1)x2 + p3x1 + p4

]
.

Use the parameter homotopy to solve f(x; p) = 0 when p = (−4, 2, 2,−3).

(4) Compute a numerical irreducible decomposition for

f(x, y, z) =

 x(x2 − y − z2)
x(x+ y + z2 − 2)(y − 5)
x(x2 + x− 2)(z − 2)

 = 0.

(5) For A =

[
a11 a12
a21 a22

]
, compute a numerical irreducible decomposition of

ATA− I = 0.

For each irreducible component V ⊂ C4, consider Xt = V ∩Ht whereHt is defined by

a11 + 2a12 + 3a21 + 5a22 = t.

Compute the linear trace of V , i.e., compute α, β ∈ C4 such that

α · t+ β =
∑
xt∈Xt

xt.

(6) Consider the parameterized polynomial

f(x; p) = x2 − x− p = 0.

Verify that {−1/4} is the branch locus so we aim to create loops in C \ {−1/4}. At p = 0,
we have two solutions, say x1 = 0 and x2 = 1. Perform a monodromy loop that encircles
the point p = −1/4, e.g., p(θ) = −1/4 + 1/4 · eiθ, and show that this loop generates a
transposition of the roots. Hence, the monondromy group is the symmetric group S2.
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2. POWER FLOW/KURAMOTO

For n oscillators, fix sn = 0 and cn = 1, parameters α ∈ Cn−1 and B ∈ Cn×n with B = BT , and
consider the polynomial system

F (s, c;α,B) =

[
αi −

∑n
j=1Bij(sicj − sjci) i = 1, . . . , n− 1
s2i + c2i − 1 i = 1, . . . , n− 1

]
= 0

which consists of 2(n− 1) equations in 2(n− 1) variables.

a. Compute the generic root count for α ∈ Cn−1 and B = BT ∈ Cn×n when n = 3 and
n = 4.

b. Compute the generic root count for α ∈ Cn−1 and v ∈ Cn where B = vvT (i.e., rank 1
coupling case) when n = 3 and n = 4.

c. For n = 4, show that α = (0.5, 0.5,−0.5,−0.5) and v = (1, 1, 1, 1) with B = vvT has
10 real solutions. What happened to the other solutions? What happens when one slightly
perturbs α?

d. For n = 4, show that α = 0 and B =


0 −3.9524 0.3177 4.3192

−3.9524 0 6.3855 −7.9773
0.3177 6.3855 0 −7.4044
4.3192 −7.9773 −7.4044 0

 (data

adapted from Zachary Charles) has 18 real solutions.

e. Experiment with the parameters to show that all solutions can be real in both the arbitrary
and rank 1 coupling cases when n = 3.

(Open) f. Is 18 the maximum number of real solutions for n = 4 with arbitrary coupling (B = BT )?

(Open) g. Is 10 the maximum number of real solutions for n = 4 with rank 1 coupling (B = vvT )?

(Open) h. Determine the generic number of solutions as a function of r = rank B and n. Determine
the maximum number of real solutions as a function of r = rank B and n.
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3. PLANE CONICS

a. Show that the space of plane conics in C3 is 8 dimensional and a general plane conic can
be defined by [

x2 + a1xy + a2y
2 + a3x+ a4y + a5

z + b1x+ b2y + b3

]
= 0

for some (a, b) ∈ C5 × C3.

b. A classical enumerative geometry problem is to count the number of plane conics in C3

that pass through k points and intersect 8 − 2k lines in general position. The following
table lists the degrees based on k:

k number of plane conics
3 1
2 4
1 18
0 92

Verify the generic root count is 18 for k = 1 (without loss of generality, one may take
the point to be the origin).

c. Setup a parameter homotopy for k = 1 and experiment to find the possible number of real
solutions.

(Open) d. Taking the point to be the origin, is it possible to find 6 real lines for which there are 18
nonreal plane conics passing through the origin and intersects the lines? If this is impos-
sible, what structure in the system requires there to always be a real solution when the
parameters (which define the real lines) are real?

e. Verify that all 92 plane conics that intersect the lines

Li = {pi + tvi | t ∈ C}
are real:

p1 = (0.46978,−3.988,−2.3527) v1 = (2.9137, 1.546,−0.27448)
p2 = (3.19, 0.5752, 3.0953) v2 = (0.56569, 1.108, 4.3629)
p3 = (0.40308, 0.78659, 0.9053) v3 = (−3.0656,−1.4638, 1.4096)
p4 = (−4.3743, 4.0046,−1.0243) v4 = (−0.9163, 3.6495,−2.6528)
p5 = (1.5198,−0.86125,−4.5963) v5 = (−3.8418, 3.9541, 2.5494)
p6 = (0.46801,−4.0308,−2.4411) v6 = (1.0225, 1.6422, 1.5925)
p7 = (−3.3382, 3.8432, 1.693) v7 = (−4.4657, 1.9618, 1.6865)
p8 = (1.3536, 3.6311, 0.42864) v8 = (−3.1442,−2.4915,−0.63586).
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4. MATRIX VARIETIES

Consider the Zariski closure of SO(n), namely

SOn = {A ∈ Cn×n | ATA = I, det(A) = 1},
and SE(n), namely

SEn = {(A, x, y, r) ∈ Cn×n×Cn×Cn×C |ATA = I, det(A) = 1, y+Ax = 0, 2r+xTx = 0}.

a. Compute degSO3 which is the generic number of assembly configurations for spherical
pentads.

b. Compute degSE2 which is the generic number of assembly configurations for planar pen-
tads.

c. Compute degSE3 which is the generic number of assembly configurations for Stewart-
Gough platforms.

d. Verify that all witness points for SE3 with respect to the linear system

`i = r + bTi x+ pTi y + pTi Mbi − (bTi bi + pTi pi − d2i )/2 = 0, i = 1, . . . , 6,

are real for the following data from Dietmaier (1998):

B =

 0 1.107915 0.549094 0.735077 0.514188 0.590473
0 0 0.756063 −0.223935 −0.526063 0.094733
0 0 0 0.525991 −0.368418 −0.205018



P =

 0 0.542805 0.956919 0.665885 0.478359 −0.137087
0 0 −0.528915 −0.353482 1.158742 −0.235121
0 0 0 1.402538 0.107672 0.353913


d =

[
1 0.645275 1.086284 1.503439 1.281933 0.771071

]
where bi and pi is the ith column of B and P , respectively. (This computation verifies that
every assembly configuration for a Stewart-Gough platform can be real.)

(Open) e. Determine the maximum number of real witness points for SON and SEN . Can they all
be real?
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