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1. ILLUSTRATIVE EXAMPLES
(1) Numerically approximate the solutions of f(z) = 2° —z + 1 = 0.

(2) The eigenvalue-eigenvector problem for a matrix A € C"*" is naturally 2—homogeneous
defined by

f(\v) = Av — \v = 0 where (\,v) € C x P* .
e Show that the 2—homogeneous Bézout bound for f is n.

e Utilize a 2—homogeneous start system to solve the eigenvalue-eigenvector problem
for the following matrices:

2 3 -2 4 —6 -2 8 —6
Al_[zx 5]’A2_{—4 6]’A3: -2 -1 4 -1
-2 0 0 4

Interpret the solutions in terms of algebraic and geometric multiplicities.
(3) Setup a parameter homotopy for
2
oy — | 21— (Pt p2)a 4 pipa
f@:p) [ (1 — p1)m2 + P31 + P4 } ‘
Use the parameter homotopy to solve f(z;p) = 0 when p = (—4, 2,2, —3).
(4) Compute a numerical irreducible decomposition for

z(2? —y — 2?)
flr,y,2)=| z(z+y+2>2—2)(y—5) | =0.
r(x? + 1z —2)(z —2)

(5) For A = { Z” 312 ], compute a numerical irreducible decomposition of
21 22
ATA-T=0.
For each irreducible component V' C C*, consider X, = V' N H, where H, is defined by
ap; + 2&12 + 3&21 + 5&22 =1.

Compute the linear trace of V, i.e., compute a, 3 € C* such that

(6) Consider the parameterized polynomial
flap)=a®—2—p=0.
Verify that {—1/4} is the branch locus so we aim to create loops in C\ {—1/4}. Atp = 0,
we have two solutions, say ;1 = 0 and 2o = 1. Perform a monodromy loop that encircles

the point p = —1/4, e.g., p(§) = —1/4 + 1/4 - ¢, and show that this loop generates a
transposition of the roots. Hence, the monondromy group is the symmetric group Ss.



2. POWER FLOW/KURAMOTO

For n oscillators, fix s,, = 0 and ¢,, = 1, parameters & € C"! and B € C"*" with B = BT, and
consider the polynomial system

ai_2?21 Bz‘j(SiCj—SjC@') i=1,...,n—1

242 -1 i=1,...n—1 |70

F(s,c;a,B) =

which consists of 2(n — 1) equations in 2(n — 1) variables.

a.

(Open) f.
(Open) g.
(Open) h.

Compute the generic root count for « € C" ! and B = BT € C™" when n = 3 and
n=4.

Compute the generic root count for « € C* ! and v € C" where B = vv (i.e., rank 1
coupling case) when n = 3 and n = 4.

. For n = 4, show that o = (0.5,0.5, —0.5, —0.5) and v = (1,1,1,1) with B = vvT has

10 real solutions. What happened to the other solutions? What happens when one slightly
perturbs o?

0 -3.9524 0.3177  4.3192
—3.9524 0 6.3855 —T7.9773
For n = 4, show that « = 0 and B = 0.3177 6.3855 0 7 4044 (data

4.3192  —7.9773 —7.4044 0
adapted from Zachary Charles) has 18 real solutions.

Experiment with the parameters to show that all solutions can be real in both the arbitrary
and rank 1 coupling cases when n = 3.

Is 18 the maximum number of real solutions for n = 4 with arbitrary coupling (B = BT)?
Is 10 the maximum number of real solutions for n = 4 with rank 1 coupling (B = vv™)?

Determine the generic number of solutions as a function of » = rank B and n. Determine
the maximum number of real solutions as a function of » = rank B and n.



3. PLANE CONICS

a. Show that the space of plane conics in C? is 8 dimensional and a general plane conic can

(Open) d.

be defined by

22 + a1y + axy? + azr + aqy + as

24 by + by + bs =0

for some (a,b) € C5 x C3.

. A classical enumerative geometry problem is to count the number of plane conics in C?

that pass through & points and intersect 8 — 2k lines in general position. The following
table lists the degrees based on k:

k ‘ number of plane conics

3 1
2 4
1 18
0 92

Verify the generic root count is 18 for £ = 1 (without loss of generality, one may take
the point to be the origin).

. Setup a parameter homotopy for £ = 1 and experiment to find the possible number of real

solutions.

Taking the point to be the origin, is it possible to find 6 real lines for which there are 18
nonreal plane conics passing through the origin and intersects the lines? If this is impos-
sible, what structure in the system requires there to always be a real solution when the
parameters (which define the real lines) are real?

. Verify that all 92 plane conics that intersect the lines

L;=A{pi+1tv; |t eC}

0.46801, —4.0308, —2. 4411)
3. 3382 3.8432,1.693)

1.0225,1.6422, 1 5925)
4.4657,1.9618, 1.6865)

are real:
= (0.46978, —3.988, —2.3527)  v; = (2.9137,1.546, —0.27448)
3.19,0.5752, 3. 0953) vy = (0.56569, 1.108, 4.3629)
0.40308, 0.78659, 0.9053) v3 = (—3.0656, —1.4638, 1.4096)
= (—4.3743,4.0046, —1.0243) vy = (—0.9163, 3.6495, —2.6528)
1.5198, —0.86125, —4.5963) w5 = (—3.8418,3.9541,2.5494)
= (
= (=
= (=

=
=
(=
=
=
(=
=

1.3536, 3.6311,0.42864)

3.1442, —2.4915, —0.63586).



4. MATRIX VARIETIES

Consider the Zariski closure of SO(n), namely

SO, ={AeC™ | ATA =1, det(A) = 1},

and SFE(n), namely
SE, ={(A,z,y,r) € C”"xC"xC"xC|ATA=1, det(A) =1, y+Ax =0, 2r+2"2 = 0}.

a.

(Open) e.

Compute deg SO3 which is the generic number of assembly configurations for spherical
pentads.

Compute deg S€, which is the generic number of assembly configurations for planar pen-
tads.

. Compute deg S E5 which is the generic number of assembly configurations for Stewart-

Gough platforms.

. Verify that all witness points for S€3 with respect to the linear system

bi=r+ble+ply+pl Mb; — (bFb; +plp—d?)/2=0, i=1,...,6,
are real for the following data from Dietmaier (1998):

[0 1.107915 0.549094 0.735077  0.514188  0.590473 |
B=10 0 0.756063 —0.223935 —0.526063 0.094733

| 0 0 0 0.525991  —0.368418 —0.205018 |

[0 0.542805 0.956919  0.665885 0.478359 —0.137087 |
P=10 0 —0.528915 —0.353482 1.158742 —0.235121
0 0 0 1.402538 0.107672  0.353913

d= [ 1 0.645275 1.086284 1.503439 1.281933 0.771071}

where b; and p; is the i*" column of B and P, respectively. (This computation verifies that
every assembly configuration for a Stewart-Gough platform can be real.)

Determine the maximum number of real witness points for SOy and S€ . Can they all
be real?
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