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Elina Robeva

Problem 0.1. Let G = (V,E) be an undirected graph and suppose that A,B, and C
are disjoint subsets of V such that C does not separate A and B. Construct a probability
distribution satisfying all the global Markov statements of G and not satisfying XA ⊥⊥ XB|XC .
Hint: Try constructing a Gaussian distribution.

Problem 0.2. Prove the following statements regarding marginals and conditionals of Gaus-
sian distributions (if you haven’t done so in the past).

(a). The marginal of a Gaussian distribution X ∼ N (µ,Σ) is a Gaussian distribution:

XA ∼ N (µA,ΣA,A).

(b). The conditional of a Gaussian distribution X ∼ N (µ,Σ) is a Gaussian distribution:

(XA|XB = xB) ∼ N (µA + ΣA,B(ΣB,B)−1(xB − µB),ΣA,A − ΣA,B(ΣB,B)−1ΣB,A).

(c). Independence in a Gaussian distribution X ∼ N (µ,Σ) is equivalent to determinants
vanishing:

Xa ⊥⊥ Xb ⇐⇒ Σa,b = 0.

(d). Conditional independence in a Gaussian distribution X ∼ N (µ,Σ) is equivalent to a
rank condition:

XA ⊥⊥ XB|XC ⇐⇒ rank(ΣA∪C,B∪C) ≤ |C|.

Problem 0.3. Given a set C of conditional independence statements for a Gaussian random
vector X ∼ N (µ,Σ), we can build the conditional independence ideal IC containing all
equations corresponding to these statements. Often times finding the primary decomposition
of IC gives additional conditional independence statements that X satisfies.

For the following problems it might be easier to use a computer algebra system like
Macaulay2. Let X ∼ N (µ,Σ) be a 3-dimensional Gaussian random vector.

(a). Show that the statements X1 ⊥⊥ X2|X3, X2 ⊥⊥ X3 imply that X1 ⊥⊥ (X2, X3).

(b). Show that X1 ⊥⊥ X3|X2, X2 ⊥⊥ X3|X1 implies (X1, X2) ⊥⊥ X3.

(c). Show that X1 ⊥⊥ X3|X2, X1 ⊥⊥ X3 implies that either X1 ⊥⊥ (X2, X3) or (X1, X2) ⊥⊥ X3.
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Problem 0.4. Consider the graph
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(a). Compute the ideal of the parametrization IG and the global Markov ideal Iglobal(G) if
the random variable X ∈ [2]× [2]× [2]× [2] has binary coordinates.

(b). Compute the ideal of the parametrization IG and the global Markov ideal Iglobal(G) if
the random variable X ∼ N (0,Σ) is Gaussian.

The Macaulay2 package ”GraphicalModels” might be useful.

Problem 0.5. Consider the graph
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(a). Compute the global Markov statements for this DAG.

(b). Compute the ideal of the parametrization IG and the global Markov ideal Iglobal(G) if
the random variable X ∈ [2]× [2]× [2]× [2]× [2] has binary coordinates.

(c). Compute the ideal of the parametrization IG and the global Markov ideal Iglobal(G) if
the random variable X ∼ N (0,Σ) is Gaussian.

The Macaulay2 package ”GraphicalModels” might be useful.

Problem 0.6. Let X ∼ N (µ,Σ) be a Gaussian random vector, and let G = (V,E) be a
DAG.

(a). Assume that X satisfies the directed global Markov property with respect to G.

1. Show that X satisfies the directed local Markov property with respect to to G, i.e.
for every v ∈ V ,

Xv ⊥⊥ Xnd(v)\pa(v)|Xpa(v).

Here nd(v) is the set of non-descendants of v, i.e. all vertices to which there isn’t
a directed path from v, and pa(v) is the set of parents of v, i.e. all vertices u such
that there is an edge u→ v.
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2. Now, define the residuals

εi := Xi − Σi,pa(i)(Σpa(i),pa(i))
−1Xpa(i).

Show that they are Gaussian random variables and are pairwise independent.

(b). Show that if there exist λij ∈ R for all edges (i, j) ∈ E and independent Gaussian
random variables ε1, . . . , εn such that

Xi =
∑
j∈pa(i)

λijXj + εj,

then X satisfies the directed local Markov property with respect to G.

Problem 0.7. Classify the Markov equivalence classes of DAGs on 4 vertices.

Problem 0.8. Let G = (V,D,B) be an acylic mixed graph and let X be a Gaussian random
vector with covariance matrix

Σ = (I − Λ)−TΩ(I − Λ)−1,

where Λ ∈ RD, Ω ∈ PD(B).

(a). For a directed path π = u0 → u1 → · · · → uk, the path monomial mπ is defined as

mπ = λu0u1λu1u2 · · ·λuk−1uk .

Show that the i, j-th entry of (I − Λ)−1 equals(
(I − Λ)−1

)
i,j

=
∑

directed paths π from i to j

mπ.

(b). For the following graph

2 3 41

compute (I − Λ)−1 using part (a).

(c). A trek between two vertices i and j in a mixed graph G has the form

1. i = uk ← uk−1 ← · · · ← u0 → · · · → v`−1 → v` = j, or

2. i = uk ← uk−1 ← · · · ← u0 ↔ v0 → · · · → v`−1 → v` = j
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In both cases k, ` are nonnegative integers. For a trek τ the trek monomial mτ is:

mτ = λuk−1uk · · ·λu0u1ωu0u0λu0v1 · · ·λv`−1v`

if the trek is of type 1, and

mτ = λuk−1uk · · ·λu0u1ωu0v0λv0v1 · · ·λv`−1v`

if the trek is of type 2.

Show that the i, j-th entry of the covariance matrix Σ = (I − Λ)−TΩ(I − Λ)−1 equals

Σi,j =
∑

treks τ between i and j

mτ .

(d). For the graph from part (b). compute Σ in terms of the entries Λ and Ω using (c).

Trek separation. Let G = (V,D,B) be a mixed graph. Let A,B,CA, CB ⊆ V . We say
that (CA, CB) trek separates A and B if every trek τ between a vertex in A and a vertex in
B either goes through a vertex in CA on its left side or through a vertex in CB on its right
side.

Theorem 0.9 ([3]). The submatrix ΣA,B has rank at most r for all Σ ∈ MG if and only if
there exist CA, CB such that (CA, CB) trek separates A and B, and |CA|+ |CB| ≤ r.

Problem 0.10. For the following graph

compute IG and Iglobal(G) using the Macaulay2 package ”GraphicalModels”. Further, com-
pute the trek separation statements and identify the generators of IG corresponding to them.

Open Problems. A very good source of open problems regarding linear structural equation
problems is Section 3 of [1].
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