Graphical models exercises

Elina Robeva

Problem 0.1. Let G = (V, E) be an undirected graph and suppose that A, B, and C
are disjoint subsets of V' such that C' does not separate A and B. Construct a probability
distribution satisfying all the global Markov statements of G’ and not satisfying X4 Il Xp|X¢.
Hint: Try constructing a Gaussian distribution.

Problem 0.2. Prove the following statements regarding marginals and conditionals of Gaus-
sian distributions (if you haven’t done so in the past).

(a). The marginal of a Gaussian distribution X ~ N (u, ) is a Gaussian distribution:

Xa~N(pa,Xa.4).

(b). The conditional of a Gaussian distribution X ~ N (u, X)) is a Gaussian distribution:
(XalXp =2p) ~ N(ua +Za5(Sp5) " (w5 — 8), Baa — Zap(Epn) " Spa).

(c). Independence in a Gaussian distribution X ~ N (u,Y) is equivalent to determinants
vanishing:
X AL X <— Ea,b =0.

(d). Conditional independence in a Gaussian distribution X ~ N (u,Y) is equivalent to a
rank condition:
XA_J.LXB|XC < rank(EAUC’BUC) S |O|

Problem 0.3. Given a set C of conditional independence statements for a Gaussian random
vector X ~ MN(u,X), we can build the conditional independence ideal I containing all
equations corresponding to these statements. Often times finding the primary decomposition
of Ic gives additional conditional independence statements that X satisfies.

For the following problems it might be easier to use a computer algebra system like
Macaulay2. Let X ~ N (p,X) be a 3-dimensional Gaussian random vector.

(a). Show that the statements X I X5| X3, X5 1l X3 imply that X; 1 (X5, X3).
(b) Show that XlJ_LX3|X2,X2J_|_X3|X1 1mphes (Xl,X2>J_|_X3.
(C). Show that Xl_J.LX3|X27X1_J.|_X3 1mp11es that either Xl_J.L(X27X3) or (Xl,XQ)_J.LXg.



Problem 0.4. Consider the graph

(a). Compute the ideal of the parametrization I and the global Markov ideal Iyopa(cy if
the random variable X € [2] x [2] x [2] X [2] has binary coordinates.

(b). Compute the ideal of the parametrization I and the global Markov ideal Igopai(q) if
the random variable X ~ A(0,X) is Gaussian.

The Macaulay2 package ” GraphicalModels” might be useful.

Problem 0.5. Consider the graph

(a). Compute the global Markov statements for this DAG.

(b). Compute the ideal of the parametrization I and the global Markov ideal Igopai(q) if
the random variable X € [2] x [2] x [2] x [2] x [2] has binary coordinates.

(c). Compute the ideal of the parametrization I and the global Markov ideal Igopai(q) if
the random variable X ~ A (0, X) is Gaussian.

The Macaulay2 package ” GraphicalModels” might be useful.

Problem 0.6. Let X ~ N (u,X) be a Gaussian random vector, and let G = (V| E) be a
DAG.

(a). Assume that X satisfies the directed global Markov property with respect to G.

1. Show that X satisfies the directed local Markov property with respect to to G, i.e.
for every v € V,
Xo AL Xod(w)\pa(e) | Xpa(v)-
Here nd(v) is the set of non-descendants of v, i.e. all vertices to which there isn’t
a directed path from v, and pa(v) is the set of parents of v, i.e. all vertices u such
that there is an edge u — v.



2. Now, define the residuals
€ 1= Xi = Dipa(i) (Spai) pati)) " Xpagi)
Show that they are Gaussian random variables and are pairwise independent.

(b). Show that if there exist A;; € R for all edges (i,7) € E and independent Gaussian
random variables €1, ..., ¢, such that

Xi: Z /\inj+€j7

j€pal(i)
then X satisfies the directed local Markov property with respect to G.
Problem 0.7. Classify the Markov equivalence classes of DAGs on 4 vertices.

Problem 0.8. Let G = (V, D, B) be an acylic mixed graph and let X be a Gaussian random
vector with covariance matrix

Y= —-AN"TQU-AN),
where A € RP, Q € PD(B).
(a). For a directed path m = ug — u; — -+ — wy, the path monomial m, is defined as
Mr = Nuguy Mugus *°* Mug_ -

Show that the i, j-th entry of (I — A)~! equals

((T=M)7),, = > M.

directed paths 7 from 7 to j

(b). For the following graph

compute (I — A)~! using part (a).
(c). A trek between two vertices ¢ and j in a mixed graph G has the form

l.i=ugp = Upq - Uy =+ = Vy_] =V =], 0r

200 =Up —Up—1 & - U Vg = =" = VU] = Uy =]



In both cases k, ¢ are nonnegative integers. For a trek 7 the trek monomial m. is:

mr = )\uk—luk “* Augus Wagug Augwy ** )\Wflve

if the trek is of type 1, and
ms = )\uk—luk * Augur Wagug Avgvr * )‘W—lve
if the trek is of type 2.
Show that the i, j-th entry of the covariance matrix ¥ = (I — A)~TQ(I — A)~! equals

Ei,j = Z m..

treks 7 between ¢ and j

(d). For the graph from part (b). compute ¥ in terms of the entries A and 2 using (c).

Trek separation. Let G = (V, D, B) be a mixed graph. Let A, B,C4,Cp C V. We say
that (Ca,Cp) trek separates A and B if every trek 7 between a vertex in A and a vertex in

B either goes through a vertex in Cy on its left side or through a vertex in C'pz on its right
side.

Theorem 0.9 ([3]). The submatrix ¥4 p has rank at most r for all ¥ € M if and only if
there exist Cy, C'p such that (Cy4,Cp) trek separates A and B, and |Ca| + |Cp| < 7.

Problem 0.10. For the following graph

compute Ig and Igopai ) using the Macaulay2 package ” GraphicalModels”. Further, com-
pute the trek separation statements and identify the generators of I corresponding to them.

Open Problems. A very good source of open problems regarding linear structural equation
problems is Section 3 of [IJ.
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