Lift \& Learn: Physics-informed machine learning for large-scale nonlinear dynamical systems

Deriving low-dimensional models

Traditional solvers for nonlinear PDEs are expensive: need inexpensive surrogate models for practical computations

- Projection-based reduced models rely on full knowledge of physics and their construction traditionally requires intrusive access to codes
- Data-fit models in machine learning treat solvers as black boxes and ignore physics

We propose Lift \& Learn, a physics-informed method for learning reduced models that can recover the generalization accuracy of traditional intrusive reduced models

- Knowledge of the governing PDE is exploited to identify a lifting map (variable transformation + auxiliary variables) that exposes quadratic structure in the PDE
- Lifting lets us reformulate nonlinear model reduction as a non-intrusive polynomial operator inference

Lifting PDEs to quadratic form

Consider the general nonlinear governing PDE with state s

$$
\frac{\partial s}{\partial t}=f(s)
$$

A quadratic lifting map \mathcal{J} transforms and augments the system state so that the PDE in the lifted state, $w=\mathcal{T}(s)$, contains only quadratic nonlinearities, e.g.:

$$
\frac{\partial w}{\partial t}=a_{0} w+a_{1} \frac{\partial w}{\partial x}+a_{2} w^{2}+a_{3} w \frac{\partial w}{\partial x}
$$

This structure allows us to reformulate the learning task as a polynomial operator inference problem.

Example

$$
\begin{array}{ccc}
\text { Original PDE } & \text { Lifting map } & \text { Lifted PDE } \\
\frac{\partial s}{\partial t}=-e^{s} & \mathcal{T}: s \mapsto\binom{s}{-e^{s}} \equiv\binom{w_{1}}{w_{2}} & \frac{\partial}{\partial t}\binom{w_{1}}{w_{2}}=\binom{w_{2}}{\left(w_{2}\right)^{2}}
\end{array}
$$

How general is the lifting approach?
Many nonlinear terms in engineering applications can be lifted to quadratic form. ${ }^{[1]}$ In some cases, quadratic transformations are known, e.g., the specific volume variables for the Euler and Navier-Stokes equations underlying many fluids applications.

How is the lifting derived?
Our current strategy is problem-specific: we introduce auxiliary variables for non-quadratic terms of the PDE and augment the system with evolution equations for these new variables Automated discovery of a lifting is a direction for future work.

Acknowledgments

The authors acknowledge the NSF GRFP, the Hertz Foundation, the US Air Force (FA9550-17-1 0195, FA9550-15-1-0038, FA9550-18-1-0023), the US Department of Energy Applied Mathematics Program (DE-FG02-08ER2585, DE-SC0009297, DESC0019334), and the SUTD MIT International Design Centre.

Elizabeth Qian (elizqian@mit.edu)
epartment of Aeronautics \& Astronautics
Benjamin Peherstorfer
Benjamin Peherstorfer
Courant Institute of Mathematical Sciences New York University

Lift \& Learn

1. Solve N-dimensional spatial discretization of original nonlinear PDE to generate K snapshots. Apply llifting map to snapshot data to obtain K lifted state and time derivative pairs ($\mathbf{W}, \dot{\mathbf{W}} \in \mathbb{R}^{N^{\prime} \times K}$)
2. Compute a d-dimensional global basis, \mathbf{V}_{d}, for the lifted data, e.g. via Proper Orthogonal Decomposition (POD) and project data:

$$
\widehat{\mathbf{W}}=\mathbf{V}_{d}^{\top} \mathbf{W}, \quad \dot{\mathbf{W}}=\mathbf{V}_{d}^{\top} \dot{\mathbf{W}}
$$

where $d \ll N$. The reduced model for projected data can be parameterized by small, dense matrix operators:

$$
\frac{\mathrm{d} \widehat{\mathbf{w}}}{\mathrm{~d} t}=\widehat{\mathbf{A}} \widehat{\mathbf{w}}+\widehat{\mathbf{H}}(\widehat{\mathbf{w}} \otimes \widehat{\mathbf{w}})
$$

3. Use least-squares operator inference ${ }^{[2]}$ procedure to learn $\widehat{\mathbf{A}} \in \mathbb{R}^{d \times d}, \widehat{\mathbf{H}} \in \mathbb{R}^{d \times d^{2}}$ from data:

$$
\min _{\widehat{\mathbf{A}} \in \mathbb{R}^{d \times d}, \widehat{\mathbf{H}} \in \mathbb{R} d \times d^{2}} \frac{1}{K}\left\|\widehat{\mathbf{W}}^{\top} \widehat{\mathbf{A}}^{\top}+(\widehat{\mathbf{W}} \otimes \widehat{\mathbf{W}})^{\top} \widehat{\mathbf{H}}^{\top}-\dot{\mathbf{W}}^{\top}\right\|_{F}^{2}
$$

Bounding the residual of Lift \& Learn models ${ }^{[3]}$:

 If the original nonlinear PDE solver uses a spatial discretization scheme with order of accuracy p, and the map \mathcal{T} is continuous with Lipschitz derivative, then the residual of the Lift \& Learn model on the training data is bounded:$$
\min _{\widehat{\mathbf{A}} \in \mathbb{R}^{d \times d}, \mathbf{H} \in \mathbb{R}^{d \times d^{2}}} \frac{1}{K}\left\|\widehat{\mathbf{W}}^{\top} \widehat{\mathbf{A}}^{\top}+(\widehat{\mathbf{W}} \otimes \widehat{\mathbf{W}})^{\top} \widehat{\mathbf{H}}^{\top}-\dot{\mathbf{W}}^{\top}\right\|_{F}^{2} \leq\left(c_{0} N^{\prime 0.5-p}+c_{1} \varepsilon\right)^{2}
$$

where ε is the projection error of \mathbf{W} onto \mathbf{V}_{d} and c_{0}, c_{1} are constants.

Implications:

1. By respecting the problem physics in the lifted coordinates we can put an upper bound on the residual of the Lift \& Learn model.
2. The Lift \& Learn model residual is at least as good as the residual of an intrusive lifted POD reduced model

Generalization \& accuracy: Euler equations

Boris Kramer

Department of Mechanical \& Aerospace Engineering University of California - San Diego

Karen Willcox

Oden Institute for Computational Engineering \& Sciences University of Texas at Austin

Generalization \& accuracy: FitzHugh-
 Nagumo neuron activation model ${ }^{[4]}$

A benchmark problem in nonlinear model reduction: Original PDE

$$
\begin{aligned}
& \frac{\partial s_{1}}{\partial t}=\gamma^{2} \frac{\partial^{2} s_{1}}{\partial x^{2}}-s_{1}^{3}+1.1 s_{1}^{2}-0.1 s_{1}+s_{2}+0.05 \\
& \frac{\partial s_{2}}{\partial t}=0.5 s_{1}-2 s_{2}+0.05
\end{aligned}
$$

Lifting map:

$$
\mathcal{T}:\binom{s_{1}}{s_{2}} \mapsto\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\left(s_{1}\right)^{2}
\end{array}\right) \equiv\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)
$$

Lifted quadratic PDE:

$$
\begin{aligned}
\gamma \frac{\partial w_{1}}{\partial t} & =\gamma^{2} \frac{\partial^{2} w_{1}}{\partial x^{2}}-w_{1} w_{3}+1.1 w_{1}^{2}-0.1 w_{1}+w_{2}+0.05 \\
\frac{\partial w_{2}}{\partial t} & =0.5 w_{1}-2 w_{2}+0.05 \\
\frac{\gamma}{2} \frac{\partial w_{3}}{\partial t} & =\gamma^{2} w_{1} \frac{\partial^{2} w_{1}}{\partial x^{2}}-w_{3}^{2}+1.1 w_{1} w_{3}-0.1 w_{3}+w_{1} w_{2}+0.05 w_{1}
\end{aligned}
$$

Error over training trajectories

Conclusions

Our Lift \& Learn approach infers low-dimensional quadratic models for nonlinear PDEs:

- Lifting maps expose quadratic structure in the nonlinear PDE so that a low-dimensional model can be explicitly parametrized by polynomial matrix operators
- We fit polynomial operators to lifted data obtained nonintrusively from the original nonlinear model
- Numerical experiments show that Lift \& Learn models recover the generalization accuracy of intrusive projectionbased reduced models

References

1] C. Gu, QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30 (2011) 1307-1320.
[2] B. Peherstorfer and K. Willcox, Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Method Appl. M., 306 (2016), p 196-215.
3] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, "Lift \& Learn: Physics informed machine learning for large-scale nonlinear dynamical systems. Physica D: Nonlinear Phenomena 406 (2020), pp. 132401
4] S. Chaturantabut, D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. on Sci. Comp. 32 (2010) 2737-2764.

