
Traditional	solvers	for	nonlinear	PDEs	are	expensive:	need	
inexpensive	surrogate	models	for	practical	computations
• Projection-based	reduced	models	rely	on	full	knowledge	

of	physics	and	their	construction	traditionally	requires	
intrusive	access	to	codes

• Data-fit	models	in	machine	learning	treat	solvers	as	black	
boxes	and	ignore	physics

We	propose	Lift & Learn,	a	physics-informed	method	for	
learning	reduced	models	that	can	recover	the	generalization	
accuracy	of	traditional	intrusive	reduced	models
• Knowledge	of	the	governing	PDE	is	exploited	to	identify	a	

lifting	map	(variable	transformation	+	auxiliary	variables)	
that	exposes	quadratic	structure	in	the	PDE

• Lifting	lets	us	reformulate	nonlinear	model	reduction	as	a	
non-intrusive	polynomial	operator	inference

Lift & Learn: Physics-informed machine learning 
for large-scale nonlinear dynamical systems
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A	benchmark	problem	in	nonlinear	model	reduction:
Original PDE:

Lifting map:

Lifted quadratic PDE:

Deriving low-dimensional models

Lifting PDEs to quadratic form

Generalization & accuracy: FitzHugh-
Nagumo neuron activation model[4]

Lift & Learn

Generalization & accuracy: Euler equations

Conclusions

Consider	the	general	nonlinear	governing	PDE	with	state	𝑠:
𝜕𝑠
𝜕𝑡
= 𝑓 𝑠

A	quadratic	lifting	map	𝒯 transforms	and	augments	the	system	
state	so	that	the	PDE	in	the	lifted	state,	𝑤 = 𝒯 𝑠 ,	contains	only	
quadratic	nonlinearities,	e.g.:

𝜕𝑤
𝜕𝑡

= 𝑎!𝑤 + 𝑎"
𝜕𝑤
𝜕𝑥

+ 𝑎#𝑤# + 𝑎$𝑤
𝜕𝑤
𝜕𝑥

This	structure	allows	us	to	reformulate	the	learning	task	as	a	
polynomial	operator	inference	problem.

1. Solve	N-dimensional	spatial	discretization	of	original	nonlinear	
PDE	to	generate	𝐾 snapshots.	Apply	liftingmap	to	snapshot	data	
to	obtain	𝐾 lifted	state	and	time	derivative	pairs	(𝐖, �̇� ∈ ℝ!

!×#)
2. Compute	a	𝑑-dimensional	global	basis,	𝐕$ ,	for	the	lifted	data,	e.g.	via	

Proper	Orthogonal	Decomposition	(POD)	and	project	data:
-𝐖 = 𝐕$%𝐖, -̇𝐖 = 𝐕$%�̇�

where	𝑑 ≪ 𝑁.	The	reduced	model	for	projected	data	can	be	
parameterized	by	small,	dense	matrix	operators:

d1𝐰
d𝑡 =

-𝐀1𝐰 + -𝐇 1𝐰⊗ 1𝐰

3. Use	least-squares	operator	inference[2] procedure	to	learn
-𝐀 ∈ ℝ$×$, -𝐇 ∈ ℝ$×$!from	data:

min
&𝐀∈ℝ"×",&𝐇∈ℝ"×"!

1
𝐾

-𝐖%-𝐀% + -𝐖⊗ -𝐖 %-𝐇 % − -̇𝐖%
,

-

Our	Lift	&	Learn	approach	infers	low-dimensional	quadratic	
models	for	nonlinear	PDEs:
• Lifting	maps	expose	quadratic	structure	in	the	nonlinear	
PDE	so	that	a	low-dimensional	model	can	be	explicitly	
parametrized	by	polynomial	matrix	operators

• We	fit	polynomial	operators	to	lifted	data	obtained	non-
intrusively	from	the	original	nonlinear	model

• Numerical	experiments	show	that	Lift	&	Learn	models	
recover	the	generalization	accuracy	of	intrusive	projection-
based	reduced	models

Example

𝜕𝑠
𝜕𝑡 = −𝑒. 𝒯: 𝑠 ↦ 𝑠

−𝑒. ≡
𝑤/
𝑤-

𝜕
𝜕𝑡

𝑤/
𝑤- =

𝑤-
(𝑤-)2

Original PDE Lifting map Lifted PDE

How is the lifting derived?
Our	current	strategy	is	problem-specific:	we	introduce	auxiliary	
variables	for	non-quadratic	terms	of	the	PDE	and	augment	the	
system	with	evolution	equations	for	these	new	variables.	
Automated	discovery	of	a	lifting	is	a	direction	for	future	work.

How general is the lifting approach?
Many	nonlinear	terms	in	engineering	applications	can	be	lifted	
to	quadratic	form.[1] In	some	cases,	quadratic	transformations	
are	known,	e.g.,	the	specific	volume	variables	for	the	Euler	and	
Navier-Stokes	equations	underlying	many	fluids	applications.	

Bounding	the	residual	of	Lift	&	Learn	models[3]:	
If	the	original	nonlinear	PDE	solver	uses	a	spatial	discretization	scheme	
with	order	of	accuracy	𝑝,	and	the	map 𝒯 is	continuous	with	Lipschitz	
derivative,	then	the	residual	of	the	Lift	&	Learn	model	on	the	training	
data	is	bounded:

min
%𝐀∈ℝ!×!,%𝐇∈ℝ!×!#

1
𝐾

/𝐖+/𝐀+ + /𝐖⊗ /𝐖
+/𝐇 + − /̇𝐖+

,

#
≤ (𝑐!𝑁-!./01 + 𝑐"𝜀)2

where	𝜀 is	the	projection	error	of	𝐖 onto	𝐕$ and	𝑐0, 𝑐/ are	constants.

Implications:
1. By	respecting	the	problem	physics	in	the	lifted	coordinates	we	can	

put	an	upper	bound	on	the	residual	of	the	Lift	&	Learn	model.
2. The	Lift	&	Learn	model	residual	is	at	least	as	good	as	the	residual	of	

an	intrusive	lifted	POD	reduced	model.
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Test error over new trajectories
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