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Deriving low-dimensional models Lift & Learn Generalization & accuracy: FitzHugh-

N . . At [4]
Traditional solvers for nonlinear PDEs are expensive: need 1. Solve N-dimensional spatial discretization of original nonlinear Nagumo neuron activation model
thEXPENSIVE s.urrogate models for practical computations PDE to generate K snapshots. Apply map to snapshot data A benchmark problem in nonlinear model reduction:

* Projection-based reduced models rely on full knowledge | | | o | . Nk Original PDE:
of physics and their construction traditionally requires to obtain K lifted state and time derivative pairs (W, W € R™ ") 95 0%, . 2
intrusive access to codes 2.  Compute a d-dimensional global basis, V, for the lifted data, e.g. via Y= =V o5 —si + L1s{ = 0.1s; + 5, +0.05
 Data-fit models in machine learning treat solvers as black Proper Orthogonal Decomposition (POD) and project data: 052 _ 0.5, — 25, + 0.05
boxes and ignore physics - - FL g ot
g pny o W=V, W, W=V, W Lifting map: .
We propose , a physics-informed method for where d < N. The reduced model for projected data can be S Sl B "1
learning reduced models that can recover the generalization . . J" (S ) = oz =2
. . . parameterized by small, dense matrix operators: 2 (5,)? W
accuracy of traditional intrusive reduced models R 1
* Knowledge of the governing PDE is exploited to identify a d_W — AW+ B QW) Lifted quadratic PDE:
lifting map (variable transformation + auxiliary variables) dt oW, 92w, :
— 22
that exposes quadratic structure in the PDE 3. Use least-squares operator inferencel?! procedure to Yot =V oz~ Waws + Liwi = 0wy +w, +0.05
. L1ft1r.1g lets .us reformulzlite nonhnea.r model reduction as a Ae R | e RAXA% from data: ow, _ 05w — 2w, 4 0.05
non-intrusive polynomial operator inference ot
L2
% - min 1 HWTA\T + (W X W)Tﬁ T—wT H y Ows = y2w oW, — w2 + 1.1w;w, — 0.1w, + wyw, + 0.05w
Lifting PDEs to quadratic form a2 K ; 2e =V WG~ Wa T Liwaws = 0.dws +wiws 1

: : : : Error over training trajectories Test errors over new trajectories

Consider the general nonlinear governing PDE with state s: Bounding the residual of Lift & Learn models/3!: | | | Now parameter regime
os = £(s) [f the original nonlinear PDE solver uses a spatial discretization scheme 88 107" E 107
ot with order of accuracy p, and the map 7" is continuous with Lipschitz % e o2l | NN . - )

. . . SO & -
A quadratic lifting map J" transforms and augments the system derivative, then the residual of the Lift & Learn model on the training R Training
state so that the PDE in the lifted state, w = T (s), contains only data is bounded: SE 00 | agme| Parameteresine )
quadratic nonlinearities, e.g.: , , & Lift € Learn : % Lift € Tearn
aw aw aw mn = |[|[WTAT+(WRW) AT - WT||" < (coN"°5P + c;e)? i s 0 1 T L
E = ayw + a, a_ + Cl2W2 + a3wa_ A\E[Rdxd,ﬁe[@dxdz K F Reduced basis dimension ¢ Reduced basis dimension @
X X
Thi » p | hel _ . where ¢ is the projection error of W onto V,; and c¢,, ¢; are constants. )
is stru.cture allows us to reformulate the learning task as a Conclusions
polynomial operator inference problem. Implications:
Example 1. By respecting the problem physics in the lifted coordinates we can Oul;iLiftf& Learrll. appr(liz;)cEfl 1nfers low-dimensional quadratic
Original PDE Lifting map [ ifted PDE put an upper bound on the residual of the Lift & Learn model. Mmodels 10 noninedr >:

The Lift & Learn model residual is at least as good as the residual of * Lifting maps expose quadratic structure in the nonlinear

aS S _ W1 a Wl WZ " . . .
it —e’ Jis e (_es) = (Wz) ey (Wz) = ((Wz)z ) an intrusive lifted POD reduced model. PDE so that a low-dimensional model can be explicitly
parametrized by polynomial matrix operators

How general is the lifting approach? Generalization & accu racy: Euler equations « We fit polynomial operators to lifted data obtained non-
Many nonlinear terms in engineering applications can be lifted intrusively from the original nonlinear model
: [1] - - . Cry - : _ | _
to andratlc forrr;l. n S(.)fr.ne C?ses, qua.dl;lltlc ;ran}slfo]gmlatlonz Original PDE Lifting map Litted PDE » Numerical experiments show that Lift & Learn models
Are RIOWLL, €5 the >PECIIC VOTUME VATlabies 1o the e an g (P 0 pr % _ L%, (a_” recover the generalization accuracy of intrusive projection-
Navier-Stokes equations underlying many fluids applications. —(pu)+—=—[ pu®>+p | =0 0 1/ =¢ ot 0x ’ Ox
ot\'p )  ox (E + p)u . ( ) p = Iy o op based reduced models
. oy . |l pU | = U = y—_7=
How is the lifting derived? _p 1 E 5 aat %x aax References
: . [ : - = —1= : iaction- ' '
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