Mauro Maggioni ${ }^{1}$, M. Patrick Martin ${ }^{1,2}$

${ }^{1}$ Department of Mathematics, Johns Hopkins University, ${ }^{2}$ mpmartin@jhu.edu

Summary

- Consider the regression problem

$$
y_{i}=f\left(x_{i}\right)+\varepsilon_{i}
$$

- Under mild assumptions on ε and x, the wellknown "curse of dimensionality" implies that if f is α-Hölder regular and x lives in D dimensional space, then the worst case L^{2}
approximation error decays like $n^{\frac{-\alpha}{2 \alpha+D}}$
- However, if f had low dimensional structure, i.e. if there existed a $d \times D$ matrix A with orthonormal rows and function g such that

$$
f(x)=g(A x)
$$

Then, if one could recover A, one should hope to be able to attain a faster convergence rate without exponential dependence on D.

The Algorithm

- The gradients of f must all lie in the image of A, as

$$
\nabla f(x)=\nabla g(A x) A
$$

- Thus, an $N \times D$ matrix B with the estimated gradients of f as rows should concentrate around A.
- Taking the top d right singular vectors of B should result in an \hat{A} moderately close to A
- This process can be repeated, with an improved estimate of A aiding the estimation of gradients, and thus improving the accuracy of \hat{A}
- Finally, use the learned projection in your regression algorithm of choice

Numerical Experiments

- There are two outcomes to track: the largest angle between the regressed and true subspaces, and the final regression error (using 5-nearest-neighbor regression, normalized by variance).
- For the L^{2} regression error, we also plot the normalized error when regressing using the true projection ("oracle").
- In both cases, $\vec{x} \in[-1,1]^{D}$

$$
g(z)=\sin \left(\frac{\pi}{6} z_{1}-\frac{\pi}{2}\right)+z_{2}
$$

$$
g(z)=\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\left|z_{4}\right|
$$

Pseudocode

Input: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}, d \in \mathbb{Z}^{+}, \hat{A}_{0} \in \mathbb{R}^{d \times D}$ while not converged:
$B_{k}=\operatorname{gradient}\left(x_{k}, y_{k}, \hat{A}_{t},\left\{\left(x_{i}, y_{i}\right)\right\}_{i}\right)$
$\hat{A}_{t+1}=\boldsymbol{s v d} \boldsymbol{r} \boldsymbol{r i g h t}(B)[: d]$
$t=t+1$
Output: \hat{A}_{t}

Sketch of Theory

Gradient computation is done by solving the weighted-least squares problem

$$
\Delta y_{k, i}=\left\langle\Delta x_{k, i}, \widehat{\nabla} f\left(x_{k}\right)\right\rangle+\xi_{k, i}
$$

on the m_{t} datapoints that minimize

$$
\left\|\hat{A}_{t}\left(x_{i}-x_{k}\right)\right\|_{2}
$$

where $m_{0} \approx N$ and decreases to an appropriate value as \hat{A}_{t} becomes more accurate.

- The distribution of $\widehat{\nabla} f\left(x_{i}\right)$ has two main contributions to its norm:
- First, the true solution to the least-squares problem $\widetilde{\nabla} f\left(x_{i}\right)$, which lies in A
- Second, the variance of the estimate, which is concentrated in \hat{A}_{t}
- As \hat{A}_{t} aligns with A, these reinforce and further improve the projection accuracy

Acknowledgements

Johns Hopkins University
Maryland Advanced Research Computing Center

