Gradient-Based Recovery of Linear Projections in Multi-Index Models Mauro Maggioni¹, M. Patrick Martin^{1,2} JOHNS HOPKINS

Summary

- Consider the regression problem $y_i = f(x_i) + \varepsilon_i$
- Under mild assumptions on ε and x, the wellknown "curse of dimensionality" implies that if f is α-Hölder regular and x lives in Ddimensional space, then the worst case L^2

approximation error decays like $n^{2\alpha+D}$ However, if *f* had low dimensional structure, i.e. if there existed a $d \times D$ matrix A with orthonormal rows and function g such that

f(x) = g(Ax)Then, if one could recover A, one should hope to be able to attain a faster convergence rate without exponential dependence on D.

The Algorithm

The gradients of f must all lie in the image of A, as

$\nabla f(x) = \nabla g(Ax)A$

- Thus, an $N \times D$ matrix B with the estimated gradients of f as rows should concentrate around A.
- Taking the top d right singular vectors of B should result in an \hat{A} moderately close to A
- This process can be repeated, with an improved estimate of A aiding the estimation of gradients, and thus improving the accuracy of \hat{A}
- Finally, use the learned projection in your regression algorithm of choice

¹ Department of Mathematics, Johns Hopkins University, ²mpmartin@jhu.edu

Numerical Experiments

- There are two outcomes to track: the largest angle between the regressed and true subspaces, and the final regression error (using 5-nearest-neighbor regression, normalized by variance). For the L^2 regression error, we also plot the normalized
- error when regressing using the true projection ("oracle").

In both cases, $\vec{x} \in [-1,1]^D$

 $g(z) = \sin\left(\frac{\pi}{6}z_1 - \frac{\pi}{2}\right) + z_2$

$g(z) = |z_1| + |z_2| + |z_3| + |z_4|$

while not converged: $\hat{A}_{t+1} = svd_right(B)[:d]$ t = t + 1**Output:** \hat{A}_t

Gradient computation is done by solving the weighted-least squares problem $\Delta y_{k,i} = \langle \Delta x_{k,i}, \widehat{\nabla} f(x_k) \rangle + \xi_{k,i}$ on the m_t datapoints that minimize $\left\|\hat{A}_t(x_i-x_k)\right\|_2$ where $m_0 \approx N$ and decreases to an appropriate value as \hat{A}_t becomes more accurate. The distribution of $\widehat{\nabla} f(x_i)$ has two main contributions to its norm: • First, the true solution to the least-squares problem $\widetilde{\nabla} f(x_i)$, which lies in A Second, the variance of the estimate, which is concentrated in \hat{A}_{t} As \hat{A}_t aligns with A, these reinforce and further improve the projection accuracy

Johns Hopkins University Maryland Advanced Research Computing Center

Pseudocode Input: $\{(x_i, y_i)\}_{i=1}^N, d \in \mathbb{Z}^+, \hat{A}_0 \in \mathbb{R}^{d \times D}$ $B_k = gradient(x_k, y_k, \hat{A}_t, \{(x_i, y_i)\}_i)$

Sketch of Theory

Acknowledgements