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Summary
• Consider the regression problem

𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜀𝑖
• Under mild assumptions on 𝜀 and 𝑥, the well-

known “curse of dimensionality” implies that if 
𝑓 is 𝛼-Hölder regular and 𝑥 lives in 𝐷-
dimensional space, then the worst case 𝐿2

approximation error decays like 𝑛
−𝛼

2𝛼+𝐷

• However, if 𝑓 had low dimensional structure, 
i.e. if there existed a 𝑑 × 𝐷 matrix 𝐴 with 
orthonormal rows and function 𝑔 such that

𝑓 𝑥 = 𝑔(𝐴𝑥)
Then, if one could recover 𝐴, one should hope 
to be able to attain a faster convergence rate 
without exponential dependence on 𝐷.

The Algorithm
• The gradients of 𝑓 must all lie in the image of 𝐴, 

as
∇𝑓 𝑥 = ∇𝑔 𝐴𝑥 𝐴

• Thus, an 𝑁 × 𝐷 matrix 𝐵 with the estimated 
gradients of 𝑓 as rows should concentrate 
around 𝐴. 

• Taking the top 𝑑 right singular vectors of 𝐵
should result in an መ𝐴 moderately close to 𝐴

• This process can be repeated, with an improved 
estimate of 𝐴 aiding the estimation of 
gradients, and thus improving the accuracy of መ𝐴

• Finally, use the learned projection in your 
regression algorithm of choice

Pseudocode
Input: { 𝑥𝑖 , 𝑦𝑖 }𝑖=1

𝑁 , 𝑑 ∈ ℤ+, መ𝐴0 ∈ ℝ𝑑×𝐷

while not converged:
𝐵𝑘 = 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕(𝑥𝑘 , 𝑦𝑘 , መ𝐴𝑡 , 𝑥𝑖 , 𝑦𝑖 𝑖)
መ𝐴𝑡+1 = 𝒔𝒗𝒅_𝒓𝒊𝒈𝒉𝒕 𝐵 [: 𝑑]
𝑡 = 𝑡 + 1

Output: መ𝐴𝑡

Sketch of Theory
• Gradient computation is done by solving the 

weighted-least squares problem

Δ𝑦𝑘,𝑖 = Δ𝑥𝑘,𝑖 , ෡∇𝑓 𝑥𝑘 + 𝜉𝑘,𝑖
on the 𝑚𝑡 datapoints that minimize

መ𝐴𝑡 𝑥𝑖 − 𝑥𝑘 2

where 𝑚0 ≈ 𝑁 and decreases to an appropriate 
value as መ𝐴𝑡 becomes more accurate. 

• The distribution of ෡∇𝑓(𝑥𝑖) has two main 
contributions to its norm: 
• First, the true solution to the least-squares 

problem ෩∇𝑓(𝑥𝑖), which lies in 𝐴
• Second, the variance of the estimate, which is 

concentrated in መ𝐴𝑡
• As መ𝐴𝑡 aligns with 𝐴, these reinforce and further 

improve the projection accuracy
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Numerical Experiments
• There are two outcomes to track: the largest angle 

between the regressed and true subspaces, and the 
final regression error (using 5-nearest-neighbor 
regression, normalized by variance). 

• For the 𝐿2 regression error, we also plot the normalized 
error when regressing using the true projection 
(“oracle”).

• In both cases, Ԧ𝑥 ∈ −1,1 𝐷
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𝑔 𝑧 = 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4


