
System-Theoretic Model Reduction in pyMOR
L. Balicki1, P. Benner1, R. Fritze2, P. Mlinarić1, M. Ohlberger2, S. Rave2, J. Saak1, F. Schindler2
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
2University of Münster, Münster, Germany

Overview

pyMOR is a software library for building model order reduction
(MOR) applications with the Python programming language.
Some of the features are:

• reduced basis and system-theoretic MOR methods,
• integration with external PDE solver packages,
• support for MPI distributed computing,
• permissive open source license (BSD-2-clause).

History

• pyMOR development started in late 2012 at WWU Münster,
focusing on reduced basis methods for parameterized PDEs

• version 0.1 released in Apr 2013
• contributions from MPI Magdeburg towards adding system-
theoretic methods started in 2015

• pyMOR’s design philosophy paper published in 2016:

R. Milk, S. Rave, F. Schindler
pyMOR – Generic Algorithms and Interfaces for Model
Order Reduction
SIAM J. Sci. Comput., 38(5), pp. S194–S216, 2016

• DFG project “pyMOR — Sustainable Software for Model Or-
der Reduction” started in Jan 2019

• version 0.5 released in Jan 2019 (the first version to include
system-theoretic methods)

• version 2019.2 released in Dec 2019

Input-output systems

The most work went into continuous-time, linear time-invariant
systems

Eẋ(t) = Ax(t) + Bu(t), x(0) = 0,
y(t) = Cx(t) + Du(t),

where u, x, and y are respectively the input, state, and output.
In the frequency-domain, we have

Y (s) = H(s)U(s), H(s) = C(sE − A)−1B + D,
where H is the transfer function. Many methods for first-order
systems were extended to second-order systems

Mẍ(t) + Eẋ(t) + Kx(t) = Bu(t), x(0) = 0, ẋ(0) = 0,
y(t) = Cpx(t) + Cvẋ(t) + Du(t),

and some for linear time-delay systems

Eẋ(t) =
q∑

i=1
Aix(t − τi) + Bu(t), x(t) = 0, t 6 0,

y(t) = Cx(t) + Du(t).

InputOutputModel

InputStateOutputModel

LTIModel SecondOrderModel LinearDelayModel

TransferFunction

Figure 1: Class diagram of input-output systems in pyMOR 2019.2

System-theoretic methods

• balancing-based and interpolatory methods for first-order and
second-order systems

• interpolatory methods for time-delay systems and transfer
functions

GenericBT

BT LQGBT BRBT

GenericSOBTpv

SOBTp SOBTv SOBTpv SOBTvp

SOBTfvSOBT

GenericBHI

LTIBHI SOBHI DelayLTIBHI TFBHI

GenericIRKA

IRKA OSIRKA TSIA SORIRKA TFIRKA

Figure 2: Class diagram of system-theoretic reductors in pyMOR 2019.2

Example

We discretize a heat equation over a cross section of a heat sink
using FEniCS, giving a model of order 12296. For the input, we
chose heating over the bottom boundary, while for the output
the adjoint of the input operator. Figure 3 shows the solution
snapshot at t = 10, starting from the zero initial condition and
with input u(t) = sin(π3t)2.

Figure 3: State of the full-order model at t = 10

After computing Hankel singular values (which is independent
of the chosen input function), using a low-rank Lyapunov equa-
tion solver, we can determine upper and lower bounds for the
relative H∞-error when using balanced truncation. Figure 4
shows these bounds.

Figure 4: Relative H∞-error upper and lower bounds for balanced truncation

We chose order 10 for the reduced-order model, for which the
bounds for the relative H∞-error are 3.38 × 10−5 and 1.23 ×
10−4. The relative H2-error can be computed and its value is
7.37× 10−3.

In Figures 5 and 6, we compare the full-order and reduced-order
model. We see that the output is approximated better than the
state.

Figure 5: State error between the full-order and reduced-order model at t = 10

Figure 6: Output of the full-order model (FOM), reduced-order model (ROM),
and the error, starting from zero initial condition and with input u(t) = sin(π3t)2

Building a model

From matrices or files

It is possible to create an LTIModel object from NumPy/SciPy
matrices or files in Matrix Market or MATLAB format:

from pymor.models.iosys import LTIModel
fom = LTIModel.from_matrices(A, B, C, D, E)
fom = LTIModel.from_abcde_files('file')
fom = LTIModel.from_mat_file('file')

By integrating with an external PDE solver package

The specialty of pyMOR is the possibility
to link to a PDE solver. Currently sup-
ported PDE solver packages are deal.II,
DUNE, FEniCS, and NGSolve.
The benefits of this approach are:

• passing of high-dimensional data is
not necessary and

• linear systems solvers from PDE
packages can be used.

Reductors

Reductors are classes with a reduce method. Here is a way to
apply balanced truncation (BT):

from pymor.reductors.bt import BTReductor
rom = BTReductor(fom).reduce(10)

and similarly for the iterative rational Krylov algorithm (IRKA):

from pymor.reductors.h2 import IRKAReductor
rom = IRKAReductor(fom).reduce(10)

Use the QR code on the right for inter-
active Jupyter notebooks demonstrating
system-theoreticmethods available in py-
MOR 2019.2 (as shown in Figure 2). It
uses mybinder.org, which might take a
few minutes to build the Docker image.

Matrix equations

Solvers for the following matrix equations types are available in
pyMOR:

Lyapunov: AXET + EXAT + BBT = 0,
Riccati: AXET + EXAT + EXCTCXET + BBT = 0,
Sylvester: AXÊT + EXÂT + BB̂T = 0.

Lyapunov equations appear in balanced truncation and H2-
norm computation, Riccati equations in variants of balanced
truncation, and sparse-dense Sylvester equations in the two-
sided iteration algorithm (TSIA).

Solvers implemented in pyMOR 2019.2 are:

• low-rank alternate direction implicit method for Lyapunov,
• low-rank RADI method for Riccati, and
• direct solver for sparse-dense Sylvester equations.

Furthermore, bindings to large-scale Lyapunov and Riccati
equation solvers in Py-M.E.S.S. are available. Solvers for
small dense matrix equations are available through bindings for
Py-M.E.S.S. and Slycot.

Installation and references

Supported Python versions
3.6 and above
PyPI
pip install pymor

Conda
conda install -c conda-forge pymor

Source code
https://github.com/pymor/pymor

Documentation
https://docs.pymor.org

DOI
10.5281/zenodo.592992

pymor.org


