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Overview

pyMOR is a software library for building model order reduction
(MOR) applications with the Python programming language.
Some of the features are:

• reduced basis and system-theoretic MOR methods,
• integration with external PDE solver packages,
• support for MPI distributed computing,
• permissive open source license (BSD-2-clause).

History

• pyMOR development started in late 2012 at WWU Münster,
focusing on reduced basis methods for parameterized PDEs

• version 0.1 released in Apr 2013
• contributions from MPI Magdeburg towards adding system-
theoretic methods started in 2015

• pyMOR’s design philosophy paper published in 2016:

R. Milk, S. Rave, F. Schindler
pyMOR – Generic Algorithms and Interfaces for Model
Order Reduction
SIAM J. Sci. Comput., 38(5), pp. S194–S216, 2016

• DFG project “pyMOR — Sustainable Software for Model Or-
der Reduction” started in Jan 2019

• version 0.5 released in Jan 2019 (the first version to include
system-theoretic methods)

• version 2019.2 released in Dec 2019

Input-output systems

The most work went into continuous-time, linear time-invariant
systems

Eẋ(t) = Ax(t) + Bu(t), x(0) = 0,
y(t) = Cx(t) + Du(t),

where u, x, and y are respectively the input, state, and output.
In the frequency-domain, we have

Y (s) = H(s)U(s), H(s) = C(sE − A)−1B + D,
where H is the transfer function. Many methods for first-order
systems were extended to second-order systems

Mẍ(t) + Eẋ(t) + Kx(t) = Bu(t), x(0) = 0, ẋ(0) = 0,
y(t) = Cpx(t) + Cvẋ(t) + Du(t),

and some for linear time-delay systems

Eẋ(t) =
q∑

i=1
Aix(t − τi) + Bu(t), x(t) = 0, t 6 0,

y(t) = Cx(t) + Du(t).
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Figure 1: Class diagram of input-output systems in pyMOR 2019.2

System-theoretic methods

• balancing-based and interpolatory methods for first-order and
second-order systems

• interpolatory methods for time-delay systems and transfer
functions
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Figure 2: Class diagram of system-theoretic reductors in pyMOR 2019.2

Example

We discretize a heat equation over a cross section of a heat sink
using FEniCS, giving a model of order 12296. For the input, we
chose heating over the bottom boundary, while for the output
the adjoint of the input operator. Figure 3 shows the solution
snapshot at t = 10, starting from the zero initial condition and
with input u(t) = sin(π3t)2.

Figure 3: State of the full-order model at t = 10

After computing Hankel singular values (which is independent
of the chosen input function), using a low-rank Lyapunov equa-
tion solver, we can determine upper and lower bounds for the
relative H∞-error when using balanced truncation. Figure 4
shows these bounds.

Figure 4: Relative H∞-error upper and lower bounds for balanced truncation

We chose order 10 for the reduced-order model, for which the
bounds for the relative H∞-error are 3.38 × 10−5 and 1.23 ×
10−4. The relative H2-error can be computed and its value is
7.37× 10−3.

In Figures 5 and 6, we compare the full-order and reduced-order
model. We see that the output is approximated better than the
state.

Figure 5: State error between the full-order and reduced-order model at t = 10

Figure 6: Output of the full-order model (FOM), reduced-order model (ROM),
and the error, starting from zero initial condition and with input u(t) = sin(π3t)2

Building a model

From matrices or files

It is possible to create an LTIModel object from NumPy/SciPy
matrices or files in Matrix Market or MATLAB format:

from pymor.models.iosys import LTIModel
fom = LTIModel.from_matrices(A, B, C, D, E)
fom = LTIModel.from_abcde_files('file')
fom = LTIModel.from_mat_file('file')

By integrating with an external PDE solver package

The specialty of pyMOR is the possibility
to link to a PDE solver. Currently sup-
ported PDE solver packages are deal.II,
DUNE, FEniCS, and NGSolve.
The benefits of this approach are:

• passing of high-dimensional data is
not necessary and

• linear systems solvers from PDE
packages can be used.

Reductors

Reductors are classes with a reduce method. Here is a way to
apply balanced truncation (BT):

from pymor.reductors.bt import BTReductor
rom = BTReductor(fom).reduce(10)

and similarly for the iterative rational Krylov algorithm (IRKA):

from pymor.reductors.h2 import IRKAReductor
rom = IRKAReductor(fom).reduce(10)

Use the QR code on the right for inter-
active Jupyter notebooks demonstrating
system-theoreticmethods available in py-
MOR 2019.2 (as shown in Figure 2). It
uses mybinder.org, which might take a
few minutes to build the Docker image.

Matrix equations

Solvers for the following matrix equations types are available in
pyMOR:

Lyapunov: AXET + EXAT + BBT = 0,
Riccati: AXET + EXAT + EXCTCXET + BBT = 0,
Sylvester: AXÊT + EXÂT + BB̂T = 0.

Lyapunov equations appear in balanced truncation and H2-
norm computation, Riccati equations in variants of balanced
truncation, and sparse-dense Sylvester equations in the two-
sided iteration algorithm (TSIA).

Solvers implemented in pyMOR 2019.2 are:

• low-rank alternate direction implicit method for Lyapunov,
• low-rank RADI method for Riccati, and
• direct solver for sparse-dense Sylvester equations.

Furthermore, bindings to large-scale Lyapunov and Riccati
equation solvers in Py-M.E.S.S. are available. Solvers for
small dense matrix equations are available through bindings for
Py-M.E.S.S. and Slycot.

Installation and references
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PyPI
pip install pymor

Conda
conda install -c conda-forge pymor

Source code
https://github.com/pymor/pymor

Documentation
https://docs.pymor.org
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