MAX PLANCK INSTITUTE :
FOR DYNAMICS OF COMPLEX
TECHNICAL SYSTEMS :
MAGDEBURG

Deutsche
Forschungsgemeinschaft

COMPUTATIONAL METHODS IN
SYSTEMS AND CONTROL THEORY

D

System-Theoretic Model Reduction in pyMOR

L. Balicki', P. Benner', R. Fritze?, P. Mlinari¢', M. Ohlberger?, S. Rave?, J. Saak’, F. Schindler?

"Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
2University of Mlnster, Miinster, Germany

pyMOR is a software library for building model order reduction
(MOR) applications with the Python programming language.
Some of the features are:

reduced basis and system-theoretic MOR methods,
integration with external PDE solver packages,
support for MPI distributed computing,

permissive open source license (BSD-2-clause).

* pyMOR development started in late 2012 at WWU Munster,
focusing on reduced basis methods for parameterized PDEs

 version 0.1 released in Apr 2013

 contributions from MPI| Magdeburg towards adding system-
theoretic methods started in 2015

« pyMOR'’s design philosophy paper published in 2016:

R. Milk, S. Rave, F. Schindler
pyMOR — Generic Algorithms and Interfaces for Model

Order Reduction
SIAM J. Sci. Comput., 38(5), pp. S194-S216, 2016

« DFG project “pyMOR — Sustainable Software for Model Or-
der Reduction” started in Jan 2019

 version 0.5 released in Jan 2019 (the first version to include
system-theoretic methods)

 version 2019.2 released in Dec 2019

The most work went into continuous-time, linear time-invariant
systems

Ex(t) = Ax(t) + Bu(t), x(0) =0,
y(t) = Cx(t) + Du(t),

where u, x, and y are respectively the input, state, and output.
In the frequency-domain, we have

Y(s) = H(s)U(s), H(s) = C(sE —A)'B+D,

where H is the transfer function. Many methods for first-order
systems were extended to second-order systems

Mx(t) + Ex(t) + Kx(t) = Bu(t), x(0)=0,x(0) =0,
y(t) = Cpx(t) + Cyx(t) + Du(t),

and some for linear time-delay systems
q
Ex(t) =) Ax(t—m)+Bu(t), x(t)=0,1<0,

=1

y(t) = Cx(t) + Du(t).

InputOutputModel
InputStatelutputModel TransferFunction

1

LTIModel SecondOrderModel | |LinearDelayModel

Figure 1: Class diagram of input-output systems in pyMOR 2019.2

System-theoretic methods

 balancing-based and interpolatory methods for first-order and
second-order systems

* interpolatory methods for time-delay systems and transfer
functions

GenericBT SOBT | | GenericSOBTpv| | SOBTfv

AN NN
BT | |LQGBT || BRBT SOBTp SOBTv | [SOBTpv ||SOBTvp

GenericBHI
/ v\

LTIBHI SOBHI | |DelayLTIBHI | | TFBHI

/ |

TRKA OSIRKA TSIA SORIRKA TFIRKA

Figure 2: Class diagram of system-theoretic reductors in pyMOR 2019.2

We discretize a heat equation over a cross section of a heat sink
using FENICS, giving a model of order 12296. For the input, we
chose heating over the bottom boundary, while for the output
the adjoint of the input operator. Figure 3 shows the solution
snapshot at t = 10, starting from the zero initial condition and
with input u(t) = sin(5t)=.

63

59

55

51

47

43

39

35

31

Figure 3: State of the full-order model at t = 10

After computing Hankel singular values (which is independent
of the chosen input function), using a low-rank Lyapunov equa-
tion solver, we can determine upper and lower bounds for the
relative H..-error when using balanced truncation. Figure 4
shows these bounds.

1 5 10 15 20
Reduced order

Figure 4: Relative H.-error upper and lower bounds for balanced truncation

We chose order 10 for the reduced-order model, for which the
bounds for the relative H..-error are 3.38 x 107> and 1.23 x
10~*. The relative H,-error can be computed and its value is
7.37 x 1073

In Figures 5 and 6, we compare the full-order and reduced-order
model. We see that the output is approximated better than the
state.

0.5

0.4

0.3
0.2
0.1
0.0
—0.1
-—0.2

I}—OLB

Figure 5: State error between the full-order and reduced-order model att = 10

temperature
=~ (@) oo
o o o

N
o

o

X103

time

Figure 6: Output of the full-order model (FOM), reduced-order model (ROM),
and the error, starting from zero initial condition and with input u(t) = sin(gz‘)2

From matrices or files

It is possible to create an LTIModel object from NumPy/SciPy
matrices or files in Matrix Market or MATLAB format:

from pymor.models.iosys import LTIModel
fom = LTIModel.from matrices(A, B, C, D, E)
fom = LTIModel.from abcde files('file')

fom = LTIModel.from mat file('file')

By integrating with an external PDE solver package

€2 deal.Il

The specialty of pyMOR is the possibility
to link to a PDE solver. Currently sup-
ported PDE solver packages are deal.ll,
DUNE, FEniICS, and NGSolve.

The benetfits of this approach are:

 passing of high-dimensional data is
not necessary and

* linear systems solvers from PDE
packages can be used.

& D

Reductors are classes with a reduce method. Here is a way to
apply balanced truncation (BT):

from pymor.reductors.bt import BTReductor
rom = BTReductor (fom) .reduce(10)

and similarly for the iterative rational Krylov algorithm (IRKA):

from pymor.reductors.h2 import IRKAReductor
rom = IRKAReductor(fom).reduce(10)

Use the QR code on the right for inter-
active Jupyter notebooks demonstrating
system-theoretic methods available in py-
MOR 2019.2 (as shown in Figure 2). It
uses mybinder.org, which might take a
few minutes to build the Docker image.

Matrix equations

Solvers for the following matrix equations types are available in
pyMOR:

Lyapunov: AXE™ + EXAT + BB =0,
Riccati. AXE'T + EXA" + EXC'CXE'" +BB' =0,
Sylvester: AX ET+EXAT +BB" = 0.

Lyapunov equations appear in balanced truncation and Ho-
norm computation, Riccati equations in variants of balanced
truncation, and sparse-dense Sylvester equations in the two-
sided iteration algorithm (TSIA).

Solvers implemented in pyMOR 2019.2 are:

 low-rank alternate direction implicit method for Lyapunov,
* low-rank RADI method for Riccati, and
« direct solver for sparse-dense Sylvester equations.

Furthermore, bindings to large-scale Lyapunov and Riccati
equation solvers in Py-M.E.S.S. are available. Solvers for
small dense matrix equations are available through bindings for
Py-M.E.S.S. and Slycot.

Installation and references

Supported Python versions
3.6 and above

PyPI
pip install pymor

Conda

conda install -c conda-forge pymor

Source code
https://github.com/pymor/pymor

pymor.org

Documentation
https://docs.pymor.org

DOI
10.5281/zenodo.592992

