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Introduction, motivation and practical insight Wiener models: transfer functions and lifting techniques
Approaches Type of data measurements u(t) R T gx) | y(t) = g[x(1)]
o Finite element/difference schemes usually e Time domain: Easy to collect, commonly . , |
lead to large-scale high fidelity models and used in many fields, e.g., nonlinear PDEs, u(t) =>,_,e"! X(1) = > Sing — A)_1B:e’°"” g(x) = Cx + K(X ® Xx).
expensive computations in memory/time. turbulent flow control, gas/energy networks. G (i)
e Using data-driven methods, learn/reveal e Frequency domain: Typically measured by . . .
reduced-order models to be used as surro- DNS (direct numerical simulations) or with * The observed output of the generallzLed Wiener model caLn be split as fO”OW&Z
gates with cheap computation time/memory. VNAs, e.g., the S(scattering) parameters. y(t) = Cx(t) + K[x(t) ® x(t)] = C Z G (iw)e™!! + K{Z G (iw)) eiwjt} 2 {Z G (iwp) eiwht]
] =
L
Z (iwy) €t + ZZ Ho(iwj, iwp)€'irenlt,
(=1 j=1 h=1

e The input-output behavior is characterized by two transfer functions

Data & Model

Hi(s1) = C(stE — A)"'B,  Ha(s1, S2) = K[(S1E — A) "B ®@ (s2E — A) 'B].

- - . _Ari Goal: Extend the classical Loewner framework by incorporating data as samples of both functions
Linear and nonlinear SVStems’ block-oriented models Hi(sy) and Hx(s1, S»); measurements are acquired by simulating the system with oscillatory signals.

_ . | | Spectrgm of‘u(t) ‘INPU‘T | | | | Spgctrurn ofy(t) QUTEUT |
The input is u(t) = e + e3; | * 3
The output is given by

e Modeling nonlinear systems is challenging due to many different possible nonlinear structures,
l.e., based on Volterra series, Wiener theory, NARMAX models, neural networks, etc.

o
oo =
T
=
(8]
T

e Different types of responses to an excitation, i.e., with subharmonics, bifurcation, chaos, etc. y(t) = Hi(20)e*" + Hy(3i)e>" oo . |
: o1\ ohit a6t =0 =
Linear Systems Nonlinear Systems + Ha(21,21)e 5_': (31, 31)e 02 j 3 | | | *
o
. + 2H2(2I’ 3/)6 I : 00 1 2 3 4 5 6 7 8 9 10 00 1 2 3 4 5 6 7 8 9 10
Ex(t) = Ax(t) + Bu(t), Ex(t) = Ax(f) + F(x(t), u(t)) + Bu(t), Frequency Frequency
y(t) = Cx(t). y(t) = Cx(t) + G(x(1), u(t)), Remark: By introducing new state variables (lifting), rewrite the Wiener model as bilinear or QB systems.
where E,A ¢ R™" B € R™™ C € RP*". where u(t) ~ input and y(f) ~ output. X(t) = x(t)X(t)x(t) € R s o [x() = Ax(t) + Bu(), s [X() = Ax+ Nxu(t) + Bu(o),
_ _ = Yyt = Cx(t) + K[x(t) @ x(t)].  simear 27 ) y(t) = CX.
Time Domain Time Domain
” input/output W iInput/output M(WWM The system matrices of the lifted bilinear system ¥g can be written as follows [Boyd/Chua '85]:
PR [EREEEERS —[A 0 _ 0. 02| = [B]|] =
Frequenf;y Domaln Frequel?wcy Domain 1o Actstoal N=lBar 1 or OHJ . B- [0n2] . C-= [c K} |
‘ input/output, - input/output
SSSESESESS gEmE=smEasd SEESSSSSsE |- (1) = ["Eg cRM | [x(t) = Ax(t) + Bu) e [x0 = Axs Qu(t) @ (1) + Nxu(t) + But),
4 Yy =Cx(t) +Kx(y @ x®)]. | a7 p(t) = Cx

e Block-oriented models form a powerful and intuitive tool to handle nonlinear systems.

o Constructed from 2 blocks: a linear time-invariant (LT1) block and a static nonlinear block. The system matrices of the lifted quadratic-bilinear system ¥ qg can be written as [Pulch/Narayan "19]

u(t flu(t t u(t t _g|z§t}|
( ) y( ) > ( ) - y( ) A B A 0 il On On><1 é _ 0n2+n,n2 0n2+n><1 B _ B é e
Hammerstein Model Wiener Model “|CA 0|7 T [2KB®l) 0 |7 T [2K(A®1,) 01y2n41 = |cg|’ ©=¢em
e Wiener models can approximate any nonlinear system with arbitrarily high accuracy (soya/chua ss)) The second (symmetric) transfer function of a quadratic-bilinear system is given by:

e Many different block combinations are possible: series, parallel or feedback connections. o8 .
HS®(s1, 82) = 5Cl(s1 + 52)l — A]"'N [(su —A) B+ (sl — A)! B} +C[(s1 + s)l — A]'Q [(su —A) "B (sl — A B}

U(t) - f[U(t)]- y(t) __%ﬂm h bilin&a?part a quadrgtricpart

Hammerstein-Wiener Model

Goal: Approximate nonlinear dynamical systems (bilinear, QB etc.) with block-oriented models (H, W, HW).

e Expand the static nonlinearities, i.e. the smooth nonlinear functions f, g, into Maclaurin series

At ]_ngz 21070, gty -3 49y dy s YO Numerical Experiments

k=1
o Keep only the the first two terms, i.e. flu(f))] ~ a1 u(t) + a2u?(t) and gly(1))] = B1y(t) + B2y2(). A small system with nonlinear rational output [Xiong/Jiang/Schutt-Ainé/Chew *17]
Wiener (Generalized) Model Hammerstein-Wiener (Generalized) Model . e AR, . . . Fit a cubic Wiener model (with O(10~4)
ener (Generalized) Mode a erste ener (Generalized) Mode . | H, _Tfnl Vi W Time-domain multiplexer coeff. approx. error) and compare results
. : P &L =R e l(t) = [Va(t) Va(t) — Va(t)]/ZF 001 ZOrgnal e DEENECOUL
s JEX() = Ax(t) + Bu(d) s JEx(t) = Ax(t) + Bu(t) + LuA(1), sy ™ The observed noniinear output (v = 1) = —oNAAS\ NS\
y(t) = Cx(t) + K|x(t) @ x(1)]. y(t) = Cx(t) + K[x(t) @ x(t)|. e ' R S
\E y(t)_4V(t)+2V2(t)+ V3(t) .
In order that the Wiener/Hammerstein structure is conserved, 3a,b € R, K = a(C ® C) and L = bB. banear Transfer Fet Vi v 1 8; V(D) > 13::(YYTmYTTYTTYT
Ha(S)=_| HC1 [ (g2 A 1 2‘/( )+ ﬁvz( )+ @\/3( ) o 107701 02 03 04 05 06 07 08 03 1
Main contribution Given input-output data in the time domain (for purely oscillating control inputs), PSS - Time
extract information from the spectrum and construct reduced-order models that explain the data.
PDE from [Benner/Breiten ’15] Burgers Equation Approx. Solution
The Loewner framework - linear system S Consider the viscous Burgers’ equation Spatial discretization with a step size h =
1/(n+ 1) produces a QB system
ov(x,t) ov(x,t) 0 v(xt (L v 9 LYy o]
ot + V(X, t) Ix = Ix (V Ix ), % ‘|'h2(2 1)+(2h+h2) 1 :

Aim: Construct reduced-order linear models directly from measurements - the Loewner framework.

0y = § =g (Uke1 = Uh-1) 4 77(tker = 2o+ 0p), 2<h <=1,
—$+%(—2Un‘|‘2’b‘n_1)} k=n.

with boundary conditions Vt > 0.

e Frequency domain: linear [Mayo/Antoulas '07]) & nonlinear [Antoulas/G./lonita *16]), [G. et al 18, *19]) .

e Time domain: linear [Peherstorfer/Gugercin/Willcox '17] & nonlinear [Peherstorfer/Gugercin '20] . v(x,0)=0, v(0,8)=u(t), v(1,5)=0. % W/OB lx Rewrite as:
. . . L t (1) =
1. Given measurements {(wx, ) : k = 1, ..., 2n} —, divide the data into two disjoint sets: (1) = Ax(t) +Qx(t) x(1) + Nx(t)u(t) + Bu(?)
First experiment n = 100, v = 0.1 Q_B_ system n= 100, Wiener r =350 The control input is a multi-tone signal
S = [811, e s Wy Wit s - ,wgg], F = [[1 (w1), ..., fn(w,-,z, [”*1 () R fgn(wgnz]. 100 intefpolation ooints in (101,102);  Bilinear system of order n, = 10100 u(f) = S _, cos(5mkt)
7; \)\r V W 100 Singular value decay of the Loewner matrix 0.06 w ‘The obseryed output‘ ‘ — : ‘Approximz‘:ltion error‘ == Bjlinear| |
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ==Original finear

==Bilinear ==Wiener

0.04 ==\\iener | |

2. The associated Loewner & shifted-Loewner matrices L. & LLs are introduced:

0.02

y(t)

Vi — W; Vi — AW, ol
L = J Le( ) = HiVi Tl i=1,...,n g0
J — Y *
)\ IU’I )\_/ -0.02
o Exact amount of data - regular Loewner pencil: WL - 008 r v "1
10 20 30 40 50 60 70 80 90 100 Time (t) v e Tingf(t) 0'8 1 N
¥ - - N~ i :
W, e T v e el s 2 Second experiment n =50, =002 b system p =50, - Wienerr=24 - The control input is u(t) = e ‘cos(4)
_ i . . . . i 80 interpolation points in (10_ 10 )I linear system Of oraer n, = Approximation error
1 . . I 1 pp
H(S) - W(L N SLS) V= : v :w1 - v :w —S v :w1)\1 K v :w \ : - f(S) ’ 10 | Singqlar valug decay‘of the Lpewner matrix | 0.08 | The‘observed oqtput - 10 | | |
p— L. p—Wm pVp— L. pVYp—WmAm ==Qrigina
Wap RSy lip—Am L lp ltp—Am Vn — Bilinear =Bilinear

0.06

==\\/iener

10-5 L
10

e Redundant data - singular Loewner pencil:

— ]
;0.04 r
107100

Project using the singular vectors of the Loewner matrix, i.e., [Y, S, X] = svd(L):

0.02

ics EJ As B}J = iW! _]Lfy _LSJ V}J = iWX, _Y*]fo, _Y*LSX, Y*V} = {Cr, Er, Ar, Br} . 0 015 i 115 é - 05 1 Time () 15 2 2.5

~~ ~~ ~~ -~ ~ ~~ -~ Time ()

model original SVD reduced ROM
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