Bugs

Dmitri Gekhtman

October 7, 2012
Escher’s problem

- *n* ants on a Möbius band
- Ant 1 chases ant 2, ant 2 chases bug 3, ant 4 chases
- What happens?
Escher’s problem

- n ants on a Möbius band
- Ant 1 chases ant 2, ant 2 chases bug 3, ant 4 chases
- What happens?
Lucas’s problem

- Three bugs on the corners of an equilateral triangle and each one chases the next one at unit speed.
- What happens (Lucas, 1877)?
Lucas’s problem

- Three bugs on the corners of an equilateral triangle and each one chases the next one at unit speed.
- What happens (Lucas, 1877)?
Regular Hexagon
Regular Decagon
The general problem in Euclidean space

- Nonsymmetric configurations of \(n \) bugs in \(\mathbb{R}^m \)?
- Bugs sweep out:
 \[\{ b_i : \mathbb{R}^+ \rightarrow \mathbb{R}^m \}_{i \in \mathbb{Z}/n}. \]
- Rule of motion:
 \[\dot{b}_i = \frac{b_{i+1} - b_i}{\| b_{i+1} - b_i \|}. \]
- When \(b_i \) catches \(b_{i+1} \), they stay together.
- Ends when all collide.
The general problem in Euclidean space

- Nonsymmetric configurations of n bugs in \mathbb{R}^m?
- Bugs sweep out
 \[\{ b_i : \mathbb{R}^+ \rightarrow \mathbb{R}^m \}_{i \in \mathbb{Z}/n}. \]
- Rule of motion
 \[\dot{b}_i = \frac{b_{i+1} - b_i}{\| b_{i+1} - b_i \|}. \]
- When b_i catches b_{i+1}, they stay together
- Ends when all collide
The general problem in Euclidean space

- Nonsymmetric configurations of n bugs in \mathbb{R}^m?
- Bugs sweep out
 \[\{b_i : \mathbb{R}^+ \to \mathbb{R}^m\}_{i \in \mathbb{Z}/n}. \]
- Rule of motion
 \[\dot{b}_i = \frac{b_{i+1} - b_i}{\|b_{i+1} - b_i\|}. \]

- When b_i catches b_{i+1}, they stay together
- Ends when all collide
The general problem in Euclidean space

- Nonsymmetric configurations of n bugs in \mathbb{R}^m?
- Bugs sweep out
 \[\{ b_i : \mathbb{R}^+ \to \mathbb{R}^m \}_{i \in \mathbb{Z}/n}. \]
- Rule of motion
 \[\dot{b}_i = \frac{b_{i+1} - b_i}{\|b_{i+1} - b_i\|}. \]
- When b_i catches b_{i+1}, they stay together
- Ends when all collide
The general problem in Euclidean space

- Nonsymmetric configurations of n bugs in \mathbb{R}^m?
- Bugs sweep out
 \[\{ b_i : \mathbb{R}^+ \to \mathbb{R}^m \}_{i \in \mathbb{Z}/n}. \]
- Rule of motion
 \[\dot{b}_i = \frac{b_{i+1} - b_i}{\|b_{i+1} - b_i\|}. \]
- When b_i catches b_{i+1}, they stay together
- Ends when all collide
200 beetles
Typical behavior

- Beetles start out in a random configuration.
- They form a nice knot shape
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Beetles start out in a random configuration.
- They form a nice knot shape.
 - Knot shape undoes itself into a circular loop.
 - Circular loop contracts to a point.
Typical behavior

- Beetles start out in a random configuration.
- They form a nice knot shape
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Typical behavior

- Beetles start out in a random configuration.
- They form a nice knot shape
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
100 beetles
1000 beetles
Finite time until collision

- Proposition: Beetles all collide in finite time.
- $L_i(t) \equiv d(b_i(t), b_{i+1}(t))$.

\[\frac{d}{dt} L_i(t) = -1 + \cos(\theta_i), \]

θ_i is i–th exterior angle of the piecewise geodesic path connecting the bugs

- Borsuk (1947): \[\sum_{i=1}^{n} |\theta_i| > 2\pi, \]

so exists j for which $|\theta_j| \geq \frac{2\pi}{n}$.

\[\frac{d}{dt} \left(\sum_{i=1}^{n} L_i(t) \right) = \sum_{i=1}^{n} \cos(\theta_i) - 1 \leq \cos(\theta_j) - 1 \leq \cos \left(\frac{2\pi}{n} \right) - 1, \]

so process terminates in time less than or equal to \[\frac{\sum_{i=1}^{n} L_i(0)}{1 - \cos(2\pi/n - 1)}. \]
Finite time until collision

- **Proposition:** Beetles all collide in finite time.
- \(L_i(t) \equiv d(b_i(t), b_{i+1}(t)). \)

\[
\frac{d}{dt} L_i(t) = -1 + \cos(\theta_i),
\]

\(\theta_i \) is \(i \)–th exterior angle of the piecewise geodesic path connecting the bugs

- **Borsuk (1947):**

\[
\sum_{i=1}^{n} |\theta_i| > 2\pi,
\]

so exists \(j \) for which \(|\theta_j| \geq \frac{2\pi}{n} \).

\[
\frac{d}{dt} \left(\sum_{i=1}^{n} L_i(t) \right) = \sum_{i=1}^{n} \cos(\theta_i) - 1 \leq \cos(\theta_j) - 1 \leq \cos\left(\frac{2\pi}{n}\right) - 1,
\]

so process terminates in time less than or equal to \(\frac{\sum_{i=1}^{n} L_i(0)}{1 - \cos(2\pi/n - 1)} \).
Finite time until collision

- Proposition: Beetles all collide in finite time.
- \(L_i(t) \equiv d(b_i(t), b_{i+1}(t)). \)

\[
\frac{d}{dt} L_i(t) = -1 + \cos(\theta_i),
\]

\(\theta_i \) is \(i \)-th exterior angle of the piecewise geodesic path connecting the bugs

- Borsuk (1947):

\[
\sum_{i=1}^{n} |\theta_i| > 2\pi,
\]

so exists \(j \) for which \(|\theta_j| \geq \frac{2\pi}{n} \).

\[
\frac{d}{dt} \left(\sum_{i=1}^{n} L_i(t) \right) = \sum_{i=1}^{n} \cos(\theta_i) - 1 \leq \cos(\theta_j) - 1 \leq \cos \left(\frac{2\pi}{n} \right) - 1,
\]

so process terminates in time less than or equal to \(\sum_{i=1}^{n} L_i(0) \frac{1}{1-\cos(2\pi/n-1)} \).
Proposition: Beetles all collide in finite time.

\[L_i(t) \equiv d(b_i(t), b_{i+1}(t)). \]

\[\frac{d}{dt} L_i(t) = -1 + \cos(\theta_i), \]

\(\theta_i \) is the \(i \)-th exterior angle of the piecewise geodesic path connecting the bugs.

Borsuk (1947):

\[\sum_{i=1}^{n} |\theta_i| > 2\pi, \]

so exists \(j \) for which \(|\theta_j| \geq \frac{2\pi}{n}. \)

\[\frac{d}{dt} \left(\sum_{i=1}^{n} L_i(t) \right) = \sum_{i=1}^{n} \cos(\theta_i) - 1 \leq \cos(\theta_j) - 1 \leq \cos \left(\frac{2\pi}{n} \right) - 1, \]

so process terminates in time less than or equal to \(\frac{\sum_{i=1}^{n} L_i(0)}{1 - \cos(2\pi/n-1)}. \)
Asymptotic circularity and stable configurations

- Question: When does it happen that shape of bug loop is asymptotically circular as we approach collapse time?
- Partial answers from (Richardson 2001).
 - The only invariant configurations are regular n–gons.
 - The only locally attracting configurations are regular n–gons for $n \geq 7$. (For $n < 7$, tend to get collapse to a line.)
- Question: What is basin of attraction of stable configurations?
Asymptotic circularity and stable configurations

- Question: When does it happen that shape of bug loop is asymptotically circular as we approach collapse time?
- Partial answers from (Richardson 2001).
- The only invariant configurations are regular n-gons.
- The only locally attracting configurations are regular n-gons for $n \geq 7$. (For $n < 7$, tend to get collapse to a line.)
- Question: What is basin of attraction of stable configurations?
Asymptotic circularity and stable configurations

- Question: When does it happen that shape of bug loop is asymptotically circular as we approach collapse time?
- Partial answers from (Richardson 2001).
- The only invariant configurations are regular n–gons.
- The only locally attracting configurations are regular n–gons for $n \geq 7$. (For $n < 7$, tend to get collapse to a line.)
- Question: What is basin of attraction of stable configurations?
Asymptotic circularity and stable configurations

Question: When does it happen that shape of bug loop is asymptotically circular as we approach collapse time?

Partial answers from (Richardson 2001).

The only invariant configurations are regular n–gons.

The only locally attracting configurations are regular n–gons for $n \geq 7$. (For $n < 7$, tend to get collapse to a line.)

Question: What is basin of attraction of stable configurations?
Bugs on manifolds

- **Manifold**: Space that looks locally like Euclidean space
- **Riemannian manifold**: Locally Euclidean space with extra structure for measuring lengths, angles, and volumes.
- Examples: Sphere, torus
Bugs on manifolds

- **Manifold**: Space that looks locally like Euclidean space
- **Riemannian manifold**: Locally Euclidean space with extra structure for measuring lengths, angles, and volumes.
- Examples: Sphere, torus
Bugs on manifolds

- **Manifold**: Space that looks locally like Euclidean space
- **Riemannian manifold**: Locally Euclidean space with extra structure for measuring lengths, angles, and volumes.
- **Examples**: Sphere, torus
Geodesics

- Straight line segments, paths of least resistance, paths followed by physical particles.
- On manifolds embedded in \mathbb{R}^n, paths of zero tangential acceleration.
- Example: On a sphere, great circle arcs.
- Closed geodesics are smooth geodesic loops, periodic paths followed by physical particles.
Geodesics

- Straight line segments, paths of least resistance, paths followed by physical particles.
- On manifolds embedded in \mathbb{R}^n, paths of zero tangential acceleration.
- Example: On a sphere, great circle arcs.
- Closed geodesics are smooth geodesic loops, periodic paths followed by physical particles.
Geodesics

- Straight line segments, paths of least resistance, paths followed by physical particles.
- On manifolds embedded in \mathbb{R}^n, paths of zero tangential acceleration.
- Example: On a sphere, great circle arcs.
- Closed geodesics are smooth geodesic loops, periodic paths followed by physical particles.
Geodesics

- Straight line segments, paths of least resistance, paths followed by physical particles.
- On manifolds embedded in \mathbb{R}^n, paths of zero tangential acceleration.
- Example: On a sphere, great circle arcs.
- *Closed* geodesics are smooth geodesic loops, periodic paths followed by physical particles.
Bugs on compact manifolds

- Place consecutive bugs close enough together so that there’s a unique geodesic connecting each one to the next.
- Give each velocity equal to the unit tangent to the geodesic.
- Goal: understand what happens to the piecewise geodesic closed loop β_t connecting consecutive beetles $t \to \infty$.
- Problem is interesting on manifold because not all loops are contractible.
- Conjecture: Bug loops which do not contract to a point converge to closed geodesics.
Place consecutive bugs close enough together so that there’s a unique geodesic connecting each one to the next.

Give each velocity equal to the unit tangent to the geodesic.

Goal: understand what happens to the piecewise geodesic closed loop \(\beta_t \) connecting consecutive beetles \(t \to \infty \).

Problem is interesting on manifold because not all loops are contractible.

Conjecture: Bug loops which do not contract to a point converge to closed geodesics.
Bugs on compact manifolds

- Place consecutive bugs close enough together so that there’s a unique geodesic connecting each one to the next.
- Give each velocity equal to the unit tangent to the geodesic.
- Goal: understand what happens to the piecewise geodesic closed loop β_t connecting consecutive beetles $t \to \infty$.
- Problem is interesting on manifold because not all loops are contractible.
- Conjecture: Bug loops which do not contract to a point converge to closed geodesics.
Bugs on compact manifolds

- Place consecutive bugs close enough together so that there’s a unique geodesic connecting each one to the next.
- Give each velocity equal to the unit tangent to the geodesic.
- Goal: understand what happens to the piecewise geodesic closed loop β_t connecting consecutive beetles $t \to \infty$.
- Problem is interesting on manifold because not all loops are contractible.
- Conjecture: Bug loops which do not contract to a point converge to closed geodesics.
Bugs on compact manifolds

- Place consecutive bugs close enough together so that there’s a unique geodesic connecting each one to the next.
- Give each velocity equal to the unit tangent to the geodesic.
- Goal: understand what happens to the piecewise geodesic closed loop β_t connecting consecutive beetles $t \to \infty$.
- Problem is interesting on manifold because not all loops are contractible.
- Conjecture: Bug loops which do not contract to a point converge to closed geodesics.
Subsequential convergence

- Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta(t_j) \to \alpha\).

\[
L_i(t) \equiv d(b_i(t), b_{i+1}(t)),
\]
\[
L(t) = \sum_i L_i(t).
\]

\[
\frac{d}{dt} L(t) = \sum_i (-1 + \cos(\theta_i)),
\]

\(\theta_i\) is \(i\)-th exterior angle of the piecewise geodesic path connecting the bugs.

- Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^\infty, t_j \to \infty\) s.t. \(\frac{d}{dt} L(t_j) \to 0\).

- Now, \(\theta_i(t_j) \to 0\) for all \(i\).

- Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be a p.g. loop connecting \(a_i\).

- By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Subsequential convergence

Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta_{t_j} \to \alpha\).

\[
L_i(t) \equiv d(b_i(t), b_{i+1}(t)),
\]

\[
L(t) = \sum_i L_i(t).
\]

\[
\frac{d}{dt} L(t) = \sum_i (-1 + \cos(\theta_i)),
\]

\(\theta_i\) is \(i\)–th exterior angle of the piecewise geodesic path connecting the bugs.

Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^\infty\), \(t_j \to \infty\) s.t. \(\frac{d}{dt} L(t_j) \to 0\).

Now, \(\theta_i(t_j) \to 0\) for all \(i\).

Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be p.g. loop connecting \(a_i\).

By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Subsequential convergence

- Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta_{t_j} \to \alpha\).

\[L_i(t) \equiv d(b_i(t), b_{i+1}(t)), \]
\[L(t) = \sum_i L_i(t). \]

\[\frac{d}{dt} L(t) = \sum_i (-1 + \cos(\theta_i)), \]

\(\theta_i\) is \(i\)-th exterior angle of the piecewise geodesic path connecting the bugs

- Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^{\infty}\), \(t_j \to \infty\) s.t. \(\frac{d}{dt} L(t_j) \to 0\).

- Now, \(\theta_i(t_j) \to 0\) for all \(i\).

- Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be p.g. loop connecting \(a_i\).

- By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Subsequential convergence

- Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta_{t_j} \rightarrow \alpha\).

- \[L_i(t) \equiv d(b_i(t), b_{i+1}(t)), \]
 \[L(t) = \sum_i L_i(t). \]

- \[\frac{d}{dt} L(t) = \sum_i (-1 + \cos(\theta_i)), \]

 \(\theta_i\) is \(i\)–th exterior angle of the piecewise geodesic path connecting the bugs

- Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^\infty, t_j \rightarrow \infty\) s.t. \(\frac{d}{dt} L(t_j) \rightarrow 0\).

- Now, \(\theta_i(t_j) \rightarrow 0\) for all \(i\).

- Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be p.g. loop connecting \(a_i\).

- By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Subsequential convergence

- Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta_{t_j} \to \alpha\).

\[
L_i(t) \equiv d(b_i(t), b_{i+1}(t)),
L(t) = \sum_i L_i(t).
\]

\[
\frac{d}{dt} L(t) = \sum_i (\cos(\theta_i) - 1),
\]

\(\theta_i\) is \(i\)-th exterior angle of the piecewise geodesic path connecting the bugs

- Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^{\infty}, t_j \to \infty\) s.t. \(\frac{d}{dt} L(t_j) \to 0\).

- Now, \(\theta_i(t_j) \to 0\) for all \(i\).

- Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be p.g. loop connecting \(a_i\).

- By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Subsequent convergence

- Proposition: Exists \((t_j)\) going to \(\infty\), and geodesic \(\alpha\) so that \(\beta_{t_j} \to \alpha\).

\[
L_i(t) \equiv d(b_i(t), b_{i+1}(t)),
\]
\[
L(t) = \sum_i L_i(t).
\]
\[
\frac{d}{dt} L(t) = \sum_i (-1 + \cos(\theta_i)),
\]

\(\theta_i\) is \(i\)-th exterior angle of the piecewise geodesic path connecting the bugs

- Since \(L_i(t)\) decreasing, bounded from below, exists subsequence \((t_j)_{j=1}^{\infty}, t_j \to \infty\) s.t. \(\frac{d}{dt} L(t_j) \to 0\).

- Now, \(\theta_i(t_j) \to 0\) for all \(i\).

- Passing to subsequence, assume \(b_i(t_j)\) converges, say to \(a_i\). Let \(\alpha\) be p.g. loop connecting \(a_i\).

- By continuity, \(\theta_i = 0\), so \(\alpha_i\) is a geodesic.
Convergence in a special case

If there is a unique closed geodesic \(\alpha \) that has a subsequence \((\beta_{t_j})\) converging to, then \(\beta_t \) converges to \(\alpha \).

- Assume for the sake of contradiction that \(\beta_t \) doesn’t converge to \(\alpha \).
- Then there’s an \(\varepsilon \) and a sequence \((t_j) \to \infty\) s.t. \(d(\beta_{t_j}, \alpha) > \varepsilon \) for all \(t_j \).
- Pass to subsequence so that \(\beta_{t_j} \) converges to a geodesic \(\alpha' \).
- \(d(\alpha', \alpha) > \varepsilon \), so \(\alpha \neq \alpha' \). Contradiction.
If there is a unique closed geodesic α that has a subsequence (β_{t_j}) converging to, then β_t converges to α.

- Assume for the sake of contradiction that β_t doesn’t converge to α.
- Then there’s an ε and a sequence $(t_j) \to \infty$ s.t. $d(\beta_{t_j}, \alpha) > \varepsilon$ for all t_j.
- Pass to subsequence so that β_{t_j} converges to a geodesic α'.
- $d(\alpha', \alpha) > \varepsilon$, so $\alpha \neq \alpha'$. Contradiction.
Convergence in a special case

If there is a unique closed geodesic α that has a subsequence (β_{t_j}) converging to, then β_t converges to α.

- Assume for the sake of contradiction that β_t doesn’t converge to α.
- Then there’s an ε and a sequence $(t_j) \to \infty$ s.t. $d(\beta_{t_j}, \alpha) > \varepsilon$ for all t_j.
- Pass to subsequence so that β_{t_j} converges to a geodesic α'.
- $d(\alpha', \alpha) > \varepsilon$, so $\alpha \neq \alpha'$. Contradiction.
If there is a unique closed geodesic α that has a subsequence (β_{t_j}) converging to, then β_t converges to α.

- Assume for the sake of contradiction that β_t doesn’t converge to α.
- Then there’s an ε and a sequence $(t_j) \to \infty$ s.t. $d(\beta_{t_j}, \alpha) > \varepsilon$ for all t_j.
- Pass to subsequence so that β_{t_j} converges to a geodesic α'.
- $d(\alpha', \alpha) > \varepsilon$, so $\alpha \neq \alpha'$. Contradiction.
Def: Tubular ε-nhd $N_\varepsilon(\alpha)$ of geodesic α is $\{ p \in M | \inf_s d(p, \alpha) < \varepsilon \}$.

Let α be a geodesic to which subsequence β_{t_j} converges.

Fact: For ε small enough, $N_\varepsilon(\alpha)$ is geodesically convex: if $p, q \in N_\varepsilon(\alpha)$, so are shortest geodesics connecting p, q.

Take any $\varepsilon > 0$ small enough that $N_\varepsilon(\alpha)$ is convex. Find T so that $\beta_T \subset N_\varepsilon(\alpha)$. By convexity, $\beta_t \subset N_\varepsilon(\alpha)$ for all $t > T$.
Convergence for nonpositively curved manifolds

- **Def:** *Tubular* ε-*nhd* $N_\varepsilon(\alpha)$ of geodesic α is $\{p \in M | \inf_s d(p, \alpha) < \varepsilon\}$.

- Let α be a geodesic to which subsequence β_{t_j} converges.

- **Fact:** For ε small enough, $N_\varepsilon(\alpha)$ is *geodesically convex*: if $p, q \in N_\varepsilon(\alpha)$, so are shortest geodesics connecting p, q.

- Take any $\varepsilon > 0$ small enough that $N_\varepsilon(\alpha)$ is convex. Find T so that $\beta_T \subset N_\varepsilon(\alpha)$. By convexity, $\beta_t \subset N_\varepsilon(\alpha)$ for all $t > T$.
Def: Tubular ε-nhd $N_\varepsilon(\alpha)$ of geodesic α is $\{p \in M| \inf_s d(p, \alpha) < \varepsilon\}$.

Let α be a geodesic to which subsequence β_{t_j} converges.

Fact: For ε small enough, $N_\varepsilon(\alpha)$ is geodesically convex: if $p, q \in N_\varepsilon(\alpha)$, so are shortest geodesics connecting p, q.

Take any $\varepsilon > 0$ small enough that $N_\varepsilon(\alpha)$ is convex. Find T so that $\beta_T \subset N_\varepsilon(\alpha)$. By convexity, $\beta_t \subset N_\varepsilon(\alpha)$ for all $t > T$.
On a torus
Convergence for unique local minimizers

- Closed geodesic α is a *unique local minimizer* of length if all closed loops in an nhd of α are longer.

- Proposition: If α is unique local minimizer and subsequence $\beta_{t_j} \to \alpha$, then $\beta_t \to \alpha$.

- Suffices to show that α is unique geodesic with subsequence of bug loops converging to it.

- Assume f.s.o.c α' also has subsequence of bug loops converging to it. Since, $L(\beta_t)$ decreasing, $L(\alpha) = L(\alpha') \equiv l$.

- Since $L(\beta_t)$ decreasing, and there is a subsequence converging to each of α, α', there is for each $\varepsilon > 0$ a path of loops of length between l and $l + \varepsilon$ connecting α to α'. Call path of loops $b_\varepsilon : [0, 1] \to \text{Loops}(M)$.
Closed geodesic α is a *unique local minimizer* of length if all closed loops in an nhd of α are longer.

Proposition: If α is unique local minimizer and subsequence $\beta_{t_j} \to \alpha$, then $\beta_t \to \alpha$.

Suffices to show that α is unique geodesic with subsequence of bug loops converging to it.

Assume fsoc α' also has subsequence of bug loops converging to it. Since, $L(\beta_t)$ decreasing, $L(\alpha) = L(\alpha') \equiv l$.

Since $L(\beta_t)$ decreasing, and there is a subsequence converging to each of α, α', there is for each $\varepsilon > 0$ a path of loops of length between l and $l + \varepsilon$ connecting α to α'. Call path of loops $b_\varepsilon : [0, 1] \to \text{Loops}(M)$.

56
Closed geodesic α is a *unique local minimizer* of length if all closed loops in an nhd of α are longer.

Proposition: If α is unique local minimizer and subsequence $\beta_{t_j} \rightarrow \alpha$, then $\beta_t \rightarrow \alpha$.

Suffices to show that α is unique geodesic with subsequence of bug loops converging to it.

Assume fsoc α' also has subsequence of bug loops converging to it.
Since, $L(\beta_t)$ decreasing, $L(\alpha) = L(\alpha') \equiv l$.

Since $L(\beta_t)$ decreasing, and there is a subsequence converging to each of α, α', there is for each $\varepsilon > 0$ a path of loops of length between l and $l + \varepsilon$ connecting α to α'. Call path of loops $b_\varepsilon : [0, 1] \rightarrow \text{Loops}(M)$.
Convergence for unique local minimizers

- Closed geodesic α is a *unique local minimizer* of length if all closed loops in an nhd of α are longer.

- Proposition: If α is unique local minimizer and subsequence $\beta_{t_j} \to \alpha$, then $\beta_t \to \alpha$.

- Suffices to show that α is unique geodesic with subsequence of bug loops converging to it.

- Assume fsoc α' also has subsequence of bug loops converging to it. Since, $L(\beta_t)$ decreasing, $L(\alpha) = L(\alpha') \equiv l$.

- Since $L(\beta_t)$ decreasing, and there is a subsequence converging to each of α, α', there is for each $\varepsilon > 0$ a path of loops of length between l and $l + \varepsilon$ connecting α to α'. Call path of loops $b_\varepsilon : [0, 1] \to \text{Loops}(M)$.

58
Closed geodesic α is a unique local minimizer of length if all closed loops in an nhd of α are longer.

Proposition: If α is unique local minimizer and subsequence $\beta_{t_j} \to \alpha$, then $\beta_t \to \alpha$.

Suffices to show that α is unique geodesic with subsequence of bug loops converging to it.

Assume fsoc α' also has subsequence of bug loops converging to it. Since, $L(\beta_t)$ decreasing, $L(\alpha) = L(\alpha') \equiv l$.

Since $L(\beta_t)$ decreasing, and there is a subsequence converging to each of α, α', there is for each $\varepsilon > 0$ a path of loops of length between l and $l + \varepsilon$ connecting α to α'. Call path of loops $b_\varepsilon : [0, 1] \to \text{Loops}(M)$.
Convergence for unique local minimizers

Choose δ so that $d(\gamma, \alpha) \leq \delta$ and $L(\gamma) = L(\alpha)$ implies γ is a reparameterization of α.

For each ε, pick a time $s_\varepsilon \in [0, 1]$ so that $d(\beta_\varepsilon(s_\varepsilon), \alpha) = \delta$.

By compactness, there is a sequence $(\varepsilon_j), j \to 0$, so that $\beta_{\varepsilon_j}(s_{\varepsilon_j})$ converges to some closed geodesic γ.

By continuity of distance, $d(\gamma, \alpha) = \delta > 0$, and by sub-continuity of length $d(\gamma) < l$. Contradiction.
Choose δ so that $d(\gamma, \alpha) \leq \delta$ and $L(\gamma) = L(\alpha)$ implies γ is a reparameterization of α.

For each ε, pick a time $s_\varepsilon \in [0, 1]$ so that $d(\beta_\varepsilon(s_\varepsilon), \alpha) = \delta$.

By compactness, there is a sequence (ε_j), $j \to 0$, so that $\beta_{\varepsilon_j}(s_{\varepsilon_j})$ converges to some closed geodesic γ.

By continuity of distance, $d(\gamma, \alpha) = \delta > 0$, and by sub-continuity of length $d(\gamma) < l$. Contradiction.
Choose δ so that $d(\gamma, \alpha) \leq \delta$ and $L(\gamma) = L(\alpha)$ implies γ is a reparameterization of α.

For each ε, pick a time $s_\varepsilon \in [0, 1]$ so that $d(\beta_\varepsilon(s_\varepsilon), \alpha) = \delta$.

By compactness, there is a sequence $(\varepsilon_j), j \to 0$, so that $\beta_{\varepsilon_j}(s_{\varepsilon_j})$ converges to some closed geodesic γ.

By continuity of distance, $d(\gamma, \alpha) = \delta > 0$, and by sub-continuity of length $d(\gamma) < l$. Contradiction.
Choose δ so that $d(\gamma, \alpha) \leq \delta$ and $L(\gamma) = L(\alpha)$ implies γ is a reparameterization of α.

For each ε, pick a time $s_\varepsilon \in [0, 1]$ so that $d(\beta_\varepsilon(s_\varepsilon), \alpha) = \delta$.

By compactness, there is a sequence (ε_j), $j \to 0$, so that $\beta_{\varepsilon_j}(s_{\varepsilon_j})$ converges to some closed geodesic γ.

By continuity of distance, $d(\gamma, \alpha) = \delta > 0$, and by sub-continuity of length $d(\gamma) < l$. Contradiction.
On the projective plane

- Projective plane is upper half of sphere with opposite points on the equator glued together.
Beetle dynamics looks a lot like curve shortening flow

- Curve-shortening pushes each point on smooth curve in the direction of the curvature vector
- Curvature vector is direction in which curve turns
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Connection to curve shortening flow?

- Beetle dynamics looks a lot like curve shortening flow
- Curve-shortening pushes each point on smooth curve in the direction of the curvature vector
- Curvature vector is direction in which curve turns
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Connection to curve shortening flow?

- Beetle dynamics looks a lot like curve shortening flow
- Curve-shortening pushes each point on smooth curve in the direction of the curvature vector
- Curvature vector is direction in which curve turns
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Connection to curve shortening flow?

- Beetle dynamics looks a lot like curve shortening flow
- Curve-shortening pushes each point on smooth curve in the direction of the curvature vector
- Curvature vector is direction in which curve turns
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Beetle dynamics looks a lot like curve shortening flow
- Curve-shortening pushes each point on smooth curve in the direction of the curvature vector
- Curvature vector is direction in which curve turns
- Knot shape undoes itself into a circular loop
- Circular loop contracts to a point
Connection to curve shortening flow?

From Curtis McMullen’s site
Something else to think about: Billiard bugs.