Outer Billiards with Contraction

In-Jee Jeong, Brown University Francisc Bozgan, UCLA Julienne Lachance, Rensselaer

Presented on August 6th (modified on August 9th)

Summary

• In section I, we discuss stability issues, shedding light on a striking difference between the regular pentagon and the regular septagon.

Summary

 In section II, we discuss trapezoidal outer billiards with contraction. We can prove that for any trapezoid there are infinitely many stable degenerate periodic orbits (SDPOs).

Summary

• In section III, we outline a proof that for certain choice of the polygon and the contraction, attracting Cantor sets exist.

A Comparison

	Square / Triangle	Trapezoid	Reg. Pentagon	Reg. Septagon
Finiteness in bounded ball	Yes	Yes (?)	No	No (?)
Exotic Periodic Orbits	None	Infinitely many	None (?)	???
Stability of Periodic Domains	Yes	Yes (?)	Yes	No !
Possible Approach	Hierarchy of the tiling	Horizontal Slicing / quasihierarchy	Renor- malization / quasihierarchy	???????

I. Stability

• Theorem. (Stability Criterion)

 Given a periodic domain Q for P, look at reflected images of P determined by the combinatorics of Q. Then Q is λ-stable if and only if the barycenter of all the images of P lies in the interior of Q.

Illustration of the Stability

Period 10 orbit

Period 30 orbit

• **Corollary**. *Symmetric* periodic domains are stable

• **Corollary**. *Odd* periodic domains are stable

• **Corollary**. When n = 3, 4, 5, 6, 8, *all* periodic domains for the regular n-gon are stable

• **Corollary**. If P is centrally symmetric, all Culter periodic domains are stable

Stability of the Regular Pentagonal Periodic Domains Let (x, y, i) be the coordinates of the vertex ϑ as γ first enters an angle, and let (x_1, y_1, i_1) be its coordinates when γ first enters the next angle. Define the map

$$\phi: (x, y, i) \mapsto (x_1, y_1, i_1).$$

Let the side of γ be equal to 1; define the shift S (in each angle) by

$$S: (x, y, i) \mapsto (x + 3 + \sqrt{5}, y, i).$$

LEMMA. $S \phi = \phi S$.

The proof is straightforward.

S. Tabachnikov Adv in Math (1995)

FIGURE 17

S. Tabachnikov Adv in Math (1995)

Regular Septagon: Unstable Pentagon

• Period 57848, Radius around 0.0001

Schwartz's Zoo of Exotic Domains

• Diameter: 0.002, Period: up to 500000

II. Trapzoids

3-5-7 Conjecture.

• All the exotic periodic orbits have periods ending with either 3, 5, or 7.

• Finiteness follows.

3-5-7 Weaker Conjecture.

• For any positive integer congruent to either 3, 5, or 7, there exists a SDPO with that integer as its period.

• Infinitely many exotic periodic orbits!

3-5-7 Weaker Conjecture.

• Weaker conjecture is proved.

 Boils down to studying fixed points of orientationreversing interval exchange transforms

Interval Exchange Transform

III. Cantor Set

Affine Contractions

- H. Bruin, J Deane *Proceedings of the AMS* (2008)
- Coloring Scheme by P. Hooper

Extending the Rotation Theory

• F. Rhodes, C. Thompson

Rotation number for monotone functions on the circle (1985) Topologies and rotation numbers for families of monotone functions on the circle (1989)

- Summary
 - Well-defined and nice with respect to strictly increasing monotone maps of the circle
 - *Continuous* with respect to the Hausdorff metric on graphs

Extending the Rotation Theory (2)

• R. Brette

Rotation numbers of discontinuous orientationpreserving circle maps (2003)

- Summary
 - *If rational,* all orbits are asymptotically periodic.
 - If irrational, the limit set is either the whole circle or a unique Cantor set

Triangular Transition on Quadrilaterals

An Invariant Region

Dynamics of the Return Map

• Semiconjugacy

Proving existence of attracting Cantor set: **Ingredients**

- Rotation theory
- Bijection between periodic orbits
- Continuity of the rotation number

Attracting Cantor set Exists!

- We sincerely thank our advisors Prof. P. Hooper, Prof. S. Tabachnikov, Diana and Tarik.
- We also thank Prof. R. Schwartz. Many figures were generated by his program.
- We also thank all ICERM staff.