Negative Snell’s Propagation

Katherine Engelman1 and Andrew Kimball2

1Bryn Mawr, 2Western Carolina University

August 8, 2012
Snell’s Law

\[n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \]
Negative Snell’s Law

\[n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \]
Previous Work
Previous Work

Escaping to Infinity with Triangle Tiling
2 Lines

ϕ, β, l_1, l_2, a, b
$$y_n = b - \beta + n(a - b)$$

$$x_n = \beta + n(b - a)$$
Theorem

A particle can not spiral around the intersection of two lines infinitely.
The number of times the particle hits l_2 is $\left\lceil \frac{\beta}{a-b} \right\rceil$.
N-Rays
3-Rays
Square Skewed by $\frac{1}{2}$
Square Skewed by $\frac{1}{2}$

Theorem

Every path in the square brick tiling skewed by $\frac{1}{2}$ is periodic within translation.
Square Skewed by $\frac{1}{2}$

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td></td>
<td></td>
<td>(3)</td>
<td>(1)</td>
<td>(2)</td>
<td>(5)</td>
</tr>
<tr>
<td>e_2</td>
<td></td>
<td></td>
<td>(5)</td>
<td>(2)</td>
<td>(1)</td>
<td>(3)</td>
</tr>
<tr>
<td>e_3</td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>e_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>e_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td>e_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Square Skewed by $\frac{1}{2}$

Case 1: $e_1 \rightarrow e_4$.
Square Skewed by $\frac{1}{2}$

Case 2: $e_1 \rightarrow e_5$.
Case 3: $e_2 \rightarrow e_6$.
Square Skewed by $\frac{1}{2}$

Case 4: $e_3 \rightarrow e_6$.
Square Skewed by $\frac{1}{2}$

Case 5: $e_5 \rightarrow e_6$.
Square Skewed by $\frac{1}{2}$

Case 5: $e_5 \rightarrow e_6$. $\alpha \in \left(0, \arctan\left(\frac{1}{\frac{1}{2} + \lambda}\right)\right)$
Square Skewed by $\frac{1}{2}$

Case 5: $e_5 \rightarrow e_6$. $\alpha \in \left(\arctan \left(\frac{1}{\frac{1}{2} + \lambda}, \pi \right) \right)$
Square Skewed by $\frac{p}{q}$
Square Skewed by $\frac{1}{3}$
Square Skewed by $\frac{1}{3}$
Square Skewed by $\frac{1}{9}$
Parallelogram Tiling
Parallelogram Tiling
Parallelogram Tiling
Parallelogram Tiling
Acknowledgements

This research was done by funding through ICERM. We would also like to thank Diana Davis, W. Patrick Hooper, and Sergei Tabachnikov for helping us with our research. And Tarik Aougab for telling funny stories.