Configuration Spaces of Hard Disks

Emily Black and Esther Hunt

Packing Problems

Square packing

Hexagonal packing

Sparse Versus Dense Packings

Applications of Dense Packings

- Properties of condensed-matter phases
- Coding theory
- "Crowding" of macromolecules within living cells
- Packing of cells to form tissue
- Competitive settlement of territories by animals

These words are three units apart

Their unit spheres do not overlap.

Applications of Sparse Packings

Boltzmann Gases

- Particles move freely with little interaction
- Is every configuration attainable from any other configuration?
- Is the Configuration Space connected?

What Are Configuration Spaces of Hard

 Disks?The configuration space of n hard disks is a subset of $R^{2 n}$. Tau: $\mathrm{R}^{2 \mathrm{n}}-\mathrm{>}$ R; Configuration-->maximum possible radius

What Does it Mean to Lock?

Unlocked: The balls can move freely to change configuration

What Does it Mean to Lock?

Locally

Locked/Jammed:

- each disk in the packing is locally trapped by its neighbors
- ie it has at least 3 contacts
- cannot be moved while fixing the positions of all other particles

What Does it Mean to Lock?

Globally Locked:

- No subset of the balls can move at all. One example would be a lattice packing.
- Global lockings refer to a local maximum of Tau.

What Does it Mean to Lock?

Unlocked

Locally Locked

Globally Locked

Sparse Packings: Things To Note

$$
\mathrm{n} \longrightarrow \infty ; \mathrm{nr}^{2} \longrightarrow 0
$$

[^0] http://www.oxnotes.com/states-of-matter-igcse-chemistry.html

Configurations: Stress Graphs

Nodes: disk centers

Edges: disk contacts

Connelly Theorem

Theorem: if there exists an infinitesimal, local motion given by a $2 n-$ component vector v in a concave or polygonal shape, then there is a global unlocking motion of the configuration.

4 Disks, 12 Contacts

4 disks, 8 contacts

Surprising Unlocked Configurations

The Boroczky Bridge

Code Based on Linear Inequalities

Pull up Mathematica

Convex Shapes: The Intuition

The Intuition Breaks: Our Shape

Construction: R, r, alpha, m , and n

We only want R and r such that the arcs contain an integer number of m and n balls

Unlocking and Locking Possibilities

Two Different Starting Points and Intuitions

Displacement Around The Shape

Getting an Equation

$$
\varphi^{\prime \prime}=c_{0}+c_{1} \varphi+c_{2} \varphi^{2}+\ldots
$$

$\left|\left(a_{1}, b_{1}\right)-\left(x_{1}, y_{1}\right)\right|^{2}=4$

$$
\left|e_{1}-V-e_{2}\right|^{2}=4
$$

Sign of the Quadratic Term

Our Results

Theorem BH

The smooth two-arc configuration is determined by three parameters, r, R, and alpha. However, whether or not the configuration locks for integer number of balls n and m , on the small and large arcs, depends only upon r and R, or, equivalently, n and m.
$\varphi^{\prime \prime}=p-\frac{p^{2}(r-R)\left((R-1)^{2}-4 \sqrt{(r-2) r} \sqrt{(R-2) R}\right)}{\sqrt{(r-2) r}(R-1)^{3}}$

Our Results

Our Results

Non-Overlapping Starting Position

Work So Far: Linear Term

$$
\psi=\varphi \frac{(r-1)((R-1) \sin (\theta+\gamma)-(R-r) \sin \gamma)}{(R-1)((r-1) \sin (\theta+\gamma)+(R-r) \sin \theta)}
$$

Investigating Unlocking Situations

Code needs to be so that we get a global unlocking motion instead of an infinitesimal, local motion.

Motion goes along entire shape, and hopefully one ball pops out

Further Directions: Proving Locking

Lemma: If $\mathrm{rho}_{\mathrm{n}}(\mathrm{s})$, where s is a starting point on the shape in question, is not a constant function, then there exists a locking configuration on the shape

Acknowledgements

A special thank you to Yuliy Baryshnikov, Maxim Arnold, Emily Stark, Stefan Klajbor, and all of our encouraging peers.

Bibliography

Baryshnikov, Y., Bubenik, P., and Kahle, M. "Min-Type Morse Theory for Configuration Spaces of Hard Spheres". Int. Math. Res. Notices, 2013.

Connelly, Robert. "Rigidity of Packings." European Journal of Combinatorics (2008): 1862871. 11 Mar. 2008. Web. 7 Aug. 2015.

Friedman, Erich. "Packing Equal Copies." Erich's Packing Center. N.p., n.d. Web. 07 Aug. 2015.

Kahle, Matthew. "Sparse locally-jammed disk packings." Annals of Combinatorics. Oct 2012.
Torquato, S., and F. H. Stillinger. Jammed Hard-particle Packings: From Kepler to Bernal and beyond 82 (2010): n. pag. Web. 7 Aug. 2015.

Questions/Comments?

Thank you for listening!

[^0]: Images: http://www.chemistry.wustl.edu/~edudev/LabTutorials/Airbags/airbags.html

