Dynamics of an n-body Crowd Model

What can simple physical models tell us about densities in crowds?

Introduction

Motivation

Past Crowd Models Helbing's work Open Questions Remain How does pedestrian density build over time?

Motivation

Predictable patterns in high density?

Can we control it?

General description

One-dimensional model.

- •Finite interval [0,L]
- •Two walls: Wall 1 at 0 and Wall 2 at L

Pedestrians

n people with position $X_i \in (0,L), i \in \{1,...,n\}$. Space occupied by pedestrian: $(x_i-r,x_i+r), X_i < X_{i+1}$ for all time t.

How to measure density?

Overlaps (assumed greater than zero) •Overlap between person i and person i+1:

$$\Delta_i = (x_i + r) - (x_{i+1} - r) = x_i - x_{i+1} + 2 \cdot r$$

•Overlaps with the walls:

$$\Delta_{W_L} := -x_i + r \qquad \Delta_{W_R} := x_n + r - L$$

Forces

Motivation: Normal Force

Recall: $\chi_i < \chi_{i+1}$ for all time t

No crossing between people

Obvious force: Normal Force

When two pedestrians are in contact, the normal force is: $F_i^N(\Delta_i) := \kappa \tan(\frac{\pi}{2} \frac{\Delta_i}{2r})$

•When a pedestrian is in contact with the wall, the normal force is:

$$F_{W_L}^N := \kappa \tan\left(\frac{\pi}{2} \frac{\Delta_L}{r}\right)$$
$$F_{W_R}^N := \kappa \tan\left(\frac{\pi}{2} \frac{\Delta_R}{r}\right)$$

Motivation: Pushing force

Necessary to depict human behavior in tightly packed conditions and need for personal space.

We expect to observe density peaks and hope to find patterns.

Pushing force I

Scenario: Reactive Pushing Force It seems natural to consider that the intensity of the force depends on the level of overlap.

This results in a force of the form:

$$F^{A}(\Delta_{i}, \dot{\Delta}_{i}) = \begin{cases} m\Delta_{i} & \text{if } 0 \geq \dot{\Delta}_{i} \\ M(\Delta_{i} - d0) & \text{if } 0 < \dot{\Delta}_{i} \end{cases}$$

Equations (Newton's 2nd Law)

$$m_1 \ddot{x_1} = F^N (\Delta_{W_L}) - F^N (\Delta_1) - F^P (\Delta_1, \dot{\Delta_1})$$
$$m_i \ddot{x_i} = F^N (\Delta_{i_1}) - F^N (\Delta_i) + F^P (\Delta_{i-1}, \dot{\Delta_{i-1}}) - F^P (\Delta_i, \dot{\Delta})$$
$$m_n \ddot{x_n} = -F^N (\Delta_{W_R}) + F^N (\Delta_{n-1}) + F^P (\Delta_{n-1}, \dot{\Delta_{n-1}})$$

Observable Data

Energy Can we verify Consistency?

 $2 \square$

Kinetic energy:

$$\sum_{i=1}^{n} KE_{i} = \sum_{i=1}^{n} \frac{1}{2}m_{i}v_{i}^{2}$$

Potential energy:

$$\int F_L^N(\Delta_L) d\Delta_L + \int F_R^N(\Delta_R) d\Delta_R + \sum_{i=1}^n \int F_i^N(\Delta_i) d\Delta_i$$
$$E = \frac{1}{2} \sum_{i=1}^n m_i \dot{\tau}_i^2 + \int F_i^N(\Delta_i) d\Delta_i + \int F_i^N(\Delta_i) d\Delta_i + \sum_{i=1}^n \int F_i^N(\Delta_i) d\Delta_i$$

 $m_i w_i + \int T_L (\Delta L) \omega \Delta L + \int T_R (\Delta R) \omega \Delta R$

Total energy:

Density

Consider an open interval J centered at $X_j \in [0,L]$

An option is to study the whole interval [0,L] first partitioning it by: $0 = X_0 < X_1 < X_2 < \ldots < X_n = L$ considering the density p_j ,

$$\rho_j(t) := \rho((X_j - \delta, X_j + \delta); t)$$
$$= \sum_{i=1}^n m[(X_j - \delta, X_j + \delta) \cap (x_i - r, x_i + r)]$$

Spacial Organization

Length & slack

If we consider the length $L \ge 2rn$, with initial overlaps and velocities equal to 0, it provides a stationary state of the system.

Reducing the length of the interval by $\varepsilon > 0$ we can induce movement.

Does this affect the results?

Initial configurations

Initial velocities are 0 m/s

We simulated with differing initial profiles

Example Simulations

Example I Initial configuration: III

Number of people: n = 2

Forces: Normal Force Only

Length: 2rn

Initial configuration III

2 people of radius 2.500000e-001

Energy Growth of Dynamic Crowd System

Density Plot of Dynamical Crowd System

Overlaps for n = 2 Case

2 people of radius 2.500000e-001

Example II Initial configuration: III

Number of people: n = 2

Forces: Normal Force & Pushing Force I

Length: 2rn

2 people of radius 2.500000e-001

2 people of radius 2.500000e-001

Energy Growth of Dynamic Crowd System

Density Plot of Dynamical Crowd System

Density Plot of Dynamical Crowd System

Overlaps for n = 2 Case

Overlaps for n = 2 Case

Example III Initial configuration: Bell Curve

Number of people: n = 50

Forces: Pushing Force I & Normal Force

Slack: Reduced

Initial configuration I (slack reduced)

50 people of radius 2.500000e-001

Density Plot of Dynamical Crowd System

Example IV Initial configuration: Wavy

Number of people: n = 50

Forces: Pushing Force I & Normal Force

Slack: Reduced

Initial configuration II (slack reduced)

Density Plot of Dynamical Crowd System

Conclusions

Relation between energy and overlaps.

Patterns in density.

Dependence on configuration.

Energy Growth from Δ

 $E(t) = \int_0^t dE = -\int_0^t \sum_{i=1}^n P(\Delta_i, \dot{\Delta}_i) d\Delta_i$

Density Waves and Dependance on Configurations

pulses form due to configurations

extrema occur along pulses

Density Plot of Dynamical Crowd System

Future work

Understand phenomena we have already observed. New simulations with different number of people and different initial conditions. Introduce new forces. Introduce concept of pressure. Develop a continuous model. 2-D model.

References

•[1] D. Helbing et al, Simulation of Pedestrian Crowds in Normal and Evacuation Situations, Pedestr. Evac. Dyn. 21(2002)

- [2] D. Helbing et al, Simulating Dynamical Features of Escape Panic, Nature.
 407(2000)
- •[3] Moussaid et al, How Simple Rules Determine Pedestrian Behavior and Crowd Disasters, PNAS, 108 (2011)
- •[4] R. Hughes: A Continuum Theory for The Flow of Pedestrians, Transportation Research Part B 507-535(2002)

Questions or Suggestions?