Mixing Time in Robotic Explorations

Chang He^1 and Shun $Yang^2$

August 7, 2015

¹Centre College ²Carleton College Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 1 / 61

Outline

1 Motivation

Model and Definitions

3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

Motivation

• Roomba

Outline

1 Motivation

2 Model and Definitions

3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

Room

$$\{A_j = [a_j, b_j] \times [c_j, d_j] \}_{j=1}^n \setminus \partial A \setminus w w := \{w_1, w_2, \cdots\}$$
 is the set of interior walls.

Figure 1: Possible paths taken by the point robot

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 5 / 61

Motion of the point robot

• Horizontal move h_i and Vertical Move h_i

Motion of the point robot

- Horizontal move h_i and Vertical Move v_i .
- Step: an ordered pair of moves (h_i, v_i) .

Definition of regions

Figure 2: Possible paths of robot starting from the red circle

Figure 3: Definition of regions in a typical room configuration

Definition (Markov Chain)

A finite Markov Chain is a process which moves among the elements of a finite set Ω so that when at $x \in \Omega$, the next state is chosen according to a fixed probability distribution $P(x, \cdot)$.

Definition (Transition Matrix)

The matrix P that that represents the Markov process with state space Ω is called the transition matrix. P is stochastic. That is, for all x^{th} row of P, $P(x, \cdot)$ satisfies:

$$\sum_{y \in \Omega} P(x, y) = 1 \tag{1}$$

Definition (Transition Matrix)

The matrix P that that represents the Markov process with state space Ω is called the transition matrix. P is stochastic. That is, for all x^{th} row of P, $P(x, \cdot)$ satisfies:

$$\sum_{y \in \Omega} P(x, y) = 1 \tag{1}$$

Theorem

Every eigenvalue λ of a stochastic matrix P satisfies $|\lambda| \leq 1$.

Definition (Stationary Distribution)

A stationary distribution π on Ω satisfies:

$$\pi = \pi P$$

(2)

12 / 61

• Irreducibility :

A transition matrix P is irreducible if $\forall x, y \in \Omega$, there exists integer t such that $P^t(x, y) > 0$.

• Aperiodicity:

Period is the greatest common divisor of $\tau(x) := \{t \ge 1 : P^t(x, x) > 0\}$. A transition matrix P is aperiodic if all states have period 1.

• Reversibility:

A transition matrix is *reversible* if it satisfies:

 $\pi(x)P(x,y) = \pi(y)P(y,x) \quad \text{for all} \quad x,y \in \Omega$ (3)

Definition

The total variation distance (TV) between two probability distribution μ and v on Ω is defined as the maximum difference between the probabilities assigned to a single event by the two distributions:

$$||\mu - \upsilon||_{TV} = \max_{A \subset \Omega} |\mu(A) - \upsilon(A)| \tag{4}$$

Theorem (Convergence Theorem)

Suppose that P is irreducible and aperiodic, with stationary distribution π . For all t, there exists constants $\alpha \in (0,1)$ and C > 0 such that:

$$\max_{x \in \Omega} ||P^t(x, \cdot) - \pi||_{TV} \le C\alpha^t \tag{5}$$

Definition (Mixing Time)

Let $d(t) := \max_{x \in \Omega} ||P^t(x, \cdot) - \pi||_{TV}$, then the mixing time t_{mix} is defined by:

$$t_{mix}(\delta) := min\{t : d(t) \le \delta\}$$
(6)

Definition (Mixing Time)

Let $d(t) := \max_{x \in \Omega} ||P^t(x, \cdot) - \pi||_{TV}$, then the mixing time t_{mix} is defined by:

$$t_{mix}(\delta) := min\{t : d(t) \le \delta\}$$
(6)

Choose $\delta = 1/100$, and

 $t_{mix} := t_{mix}(1/100)$

Outline

Motivation

2 Model and Definitions

3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

Figure 4: A simple Room

Figure 4: A simple Room

x₁ x₂

Figure 5: Labeled regions

Relaxation time t_{rel}

• *P* is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$1 = |\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_{|\Omega|}| \ge -1 \tag{7}$$

Relaxation time t_{rel}

• *P* is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$1 = |\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_{|\Omega|}| \ge -1 \tag{7}$$

• Spectral gap of P is $\gamma := 1 - |\lambda_2|$

Relaxation time t_{rel}

• *P* is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$1 = |\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_{|\Omega|}| \ge -1 \tag{7}$$

(8)

• Spectral gap of P is
$$\gamma := 1 - |\lambda_2|$$

Definition (Relexation Time)

The *relaxation time* t_{rel} of P with spectral gap γ is defined as:

$$t_{rel} := \frac{1}{\gamma}$$

Relation between t_{mix} and t_{rel} :

Theorem

Let $\pi_{\min} := \min_{x \in \Omega} \pi(x)$. For a reversible, irreducible and aperiodic Markov chain with state space Ω , the relation between its relaxation time t_{rel} and π_{min} can be represented as:

$$\log(\frac{1}{\delta\pi_{min}})t_{rel} \ge t_{mix}(\delta) \ge (t_{rel} - 1)\log(\frac{1}{2\delta}) \tag{9}$$

Relation between t_{mix} and t_{rel} :

Theorem

Let $\pi_{\min} := \min_{x \in \Omega} \pi(x)$. For a reversible, irreducible and aperiodic Markov chain with state space Ω , the relation between its relaxation time t_{rel} and π_{\min} can be represented as:

$$\log(\frac{1}{\delta\pi_{min}})t_{rel} \ge t_{mix}(\delta) \ge (t_{rel} - 1)\log(\frac{1}{2\delta}) \tag{9}$$

Therefore, t_{mix} and t_{rel} are on the same order.

• Computation Results: $|\lambda_2| = 1 - \epsilon$ $t_{mix} = 1/\gamma = 1/(1 - \epsilon) = \Theta(\frac{1}{\epsilon}).$

$$P = \begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ x_1 & 1-\epsilon & 0 & \epsilon & 0 \\ 0 & 1-\epsilon & 0 & \epsilon \\ \frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2}\epsilon & \frac{1}{2}\epsilon \\ \frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2}\epsilon & \frac{1}{2}\epsilon \end{array} \right).$$

- Computation Results: $|\lambda_2| = 1 \epsilon$ $t_{mix} = 1/\gamma = 1/(1 - \epsilon) = \Theta(\frac{1}{\epsilon}).$
- Simulation Results:

Figure 6: Simulation Results n = 100 and $\epsilon = 0.001$

Figure 7: Simulation Results n = 1000 and $\epsilon = 0.001$

25 / 61

Proposition

Horizontal (vertical) scaling does not change t_{mix} .

Proposition

Horizontal (vertical) scaling does not change t_{mix} .

Definition (Bottleneck Ratio)

After scaling the room to unit dimensions, we define the length of the smallest horizontal (vertical) gap as ϵ , which is also the bottleneck ratio.

Outline

1 Motivation

- 2 Model and Definitions
- 3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

Figure 8: A "Comb" Shape Room With N = 6

Comb Room: Matrix Approach

$$P = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix}$$

$$\begin{split} P_{11} &= (1-\epsilon)I, \\ P_{12} &= \epsilon I, \\ P_{21} &= \frac{1-\epsilon}{N}J \\ P_{22} &= \frac{\epsilon}{N}J. \\ I \text{ is the } N \times N \text{ identity matrix,} \\ \text{and } J \text{ is the } N \times N \text{ matrix with all entries being one.} \end{split}$$

Comb Room

•
$$|\lambda_2| = 1 - \epsilon$$

• $t = \Theta(1/\epsilon)$

• $t_{mix} = \Theta(1/\epsilon)$

Snake Room (ouroboric)

Figure 9: An Ouroboric Snake Shape Room With N = 6

Ouroboric Snake

Figure 10: An Ouroboric Snake

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 32 / 61

Circulant Matrix for ouroboric Snake Room

$$\begin{pmatrix} x_{3n-5} & x_{3n-4} & x_{3n-3} & x_{3n-2} & x_{3n-1} & x_{3n} & x_{3n+1} & x_{3n+2} & x_{3n+3} \\ x_{3n-2} \begin{pmatrix} \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} \\ x_{3n-1} \\ x_{3n} \end{pmatrix} \begin{pmatrix} \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} \\ & & & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} \\ & & & & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2\epsilon}{2} & \frac{\epsilon}{2} \end{pmatrix}$$

Chang He and Shun Yang Mixing Time in Robotic Explorations

The k^{th} eigenvectors r_k has the form:

$$r_{k} = \begin{bmatrix} a \\ b \\ c \\ ae^{2\pi i k/N} \\ be^{-2\pi i k/N} \\ ce^{-2\pi i k/N} \\ \vdots \\ ae^{-2\pi i k(N-1)/N} \\ be^{-2\pi i k(N-1)/N} \\ ce^{-2\pi i k(N-1)/N} \end{bmatrix}$$

where $k = 0, 1, 2, \dots, N-1$ and a, b, c are three constants depending on N and k.

The k^{th} eigenvectors r_k has the form:

$$r_{k} = \begin{bmatrix} a \\ b \\ c \\ ae^{2\pi i k/N} \\ be^{-2\pi i k/N} \\ ce^{-2\pi i k/N} \\ \vdots \\ ae^{-2\pi i k(N-1)/N} \\ be^{-2\pi i k(N-1)/N} \\ ce^{-2\pi i k(N-1)/N} \end{bmatrix}$$

where $k = 0, 1, 2, \dots, N-1$ and a, b, c are three constants depending on N and k.

$$\lambda \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \epsilon/2(1+e^{\frac{2\pi ik}{N}}) & (1/2-\epsilon)(1+e^{\frac{2\pi ik}{N}}) & \epsilon/2(1+e^{\frac{2\pi ik}{N}}) \\ \epsilon & 1-2\epsilon & \epsilon \\ \epsilon/2(1+e^{\frac{-2\pi ik}{N}}) & (1/2-\epsilon)(1+e^{\frac{-2\pi ik}{N}}) & \epsilon/2(1+e^{\frac{-2\pi ik}{N}}) \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Chang He and Shun Yang Mixing Time in Robotic Explorations August 7, 2015 34 / 61

- Trace: $1 \epsilon + \epsilon \cos(\frac{2\pi k}{N})$
- When k = 1,

$$t_{mix} = \frac{1}{\epsilon (1 - \cos(\frac{2\pi k}{N}))} \approx \frac{N^2}{2\pi^2 \epsilon}$$

which is of $\Theta(N^2/\epsilon)$.

• Shape

Figure 11: non-ouroboric snake shape

- Coupling Method
 - Definitions

Definition (Coupling of Markov Chains)

A coupling of Markov chains with transition matrix P is a process $(X_t, Y_t)_{t=0}^{\infty}$ with the property that both (X_t) and (Y_t) are Markov chains with transition matrix P, although the two chains may have different starting distribution.

Definition (t_{coup})

The coupling time $t_{coup} := \min\{t : X_t = Y_t\}$

- Coupling Method
 - How to bound t_{mix}

Theorem

Suppose that for each pair of states $x, y \in \Omega$ there is a coupling (X_t, Y_t) with $X_0 = x$ and $Y_0 = y$. Then, for each such coupling,

$$d(t) \le \max_{x,y \in \Omega} P_{x,y}\{t_{coup} > t\}$$

$$\tag{10}$$

Theorem (Markov's Inequality)

If X is any nonnegative random variable and a > 0, then

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}(X)}{a}.$$
(11)

Corollary $t_{mix} \leq 100E_{x,y}(t_{coup})$ (12)Chang He and Shun YangMixing Time in Robotic ExplorationsAugust 7, 201538 / 61

- Coupling Method
 - Design a coupling

Definition (Specific coupling design for this case)

For any two points x, y, at each step, let x move first and then y move. At each step, y always moves to the same vertical height as x. If x and y are in the same chamber, then y also moves to the same horizontal location as x.

Theorem (Observation)

 $E_{x,y}(t_{coup})$, in this case, is bounded above by the expected time for one point to move from the first chamber to the last chamber.

• Redefine States

Figure 12: Simplified States

• Random Walk On A Graph

Figure 13: Simplified Random Walk On A Graph

• Solve expected time from x_1 to x_N : If we denote the expected time of moving from the n^{th} chamber to the last chamber (the N^{th}) as T(n), then we would easily obtain a following recurrence relation:

$$T(n+1) - 2T(n) + T(n-1) + 1/\epsilon = 0$$
(13)

with boundary conditions:

$$T(0) = T(1) + 2/\epsilon, \quad T(N) = 0$$
 (14)

• Bound mixing time t_{mix} : After solving this relation, we find that

$$T(n) = -\frac{3n}{2\epsilon} - \frac{n^2}{2\epsilon} + \frac{3N}{2\epsilon} + \frac{N^2}{2\epsilon}$$
(15)

Therefore we would have

 $t_{mix} \leq 100 \cdot E(t_{coup}) \leq 100 \cdot T(0) = \frac{150N}{\epsilon} + \frac{50N^2}{\epsilon}$. Therefore, we know that the mixing time t_{mix} in this case is also bounded above by $O(\frac{N^2}{\epsilon})$.

Definition

A room is a *n*-Lego room if and only if it consists of *n* unit chambers and each chamber is connected to at least one other chamber. The walls between any two connected chamber is of length $1 - \epsilon$.

Figure 14: An Example of 5-Lego Room

• Random Walk

Figure 15: The Equivalent Random Walk On a Graph

Theorem (The Wall Theorem)

The mixing time t_{mix} for a room increases when the length of one wall is extended and decreases when it is shortened.

Corollary (Special Case Of The Wall Theorem)

For any random walk on a graph G, if the probability between state i and state j is decreased (the probability of staying in i and j is increased), then the mixing time t_{mix} for this process increases. If such probability is increased, then t_{mix} decreases.

Transformation by the previous Corollary:

Figure 16: A transformation that decreases mixing time

Transformation by TWT and its Corollary:

Figure 17: A transformation that increases mixing time

Definition

A red random walk on a graph G is a random walk such that the probability from any vertex i to vertex j of G (in one step) is either 0 or $q\epsilon$, where q is a constant for this walk.

Definition (Laplacian Matrix)

Let G = (V, E) be a non-directed finite graph. Let V be the set of vertices and |V| = N. Then after choosing a fixed ordering $w_1, w_2, ..., w_N$ of the set V, the Laplacian matrix is the N by N matrix A(G) whose diagonal entries a_{ii} being the valencies of vertex i and off diagonal entries $a_{ij} = a_{ji} = -1$ if vertex i and j are connected and 0 otherwise.

Definition (Algebraic Connectivity)

Let $n \ge 2$ and $0 \le \lambda_1 \le \lambda_2 = a(G) \le \lambda_3 \le \cdots \le \lambda_n$ be the eigenvalues of the matrix A(G). The *algebraic connectivity* of the graph G is the second smallest eigenvalue a(G).

Theorem (Fiedler, 1973)

Denote e(G) as the edge connectivity of a connected graph G, which is the minimal number of edges whose removal would result in losing connectivity of the graph G. Then for any G, we have

$$N \ge a(G) \ge e(G)(1 - \cos(\pi/N)) \tag{16}$$

Notice that the second largest eigenvalue of transition matrix P for a red random walk on G is $\lambda_2 = 1 - q\epsilon a(G)$.

Theorem (Mixing Time for A Lego Room)

If a room is a N-Lego room, then the mixing time t_{mix} for this room is bounded below from $O(\frac{1}{N\epsilon})$ and bounded above by $O(\frac{N^2}{\epsilon})$.

A General Room

Figure 20: A Room

52 / 61

A General Room

Lemma

For any room, the number of states is on the order of O(s), where s is the number of sides.

Lemma

The probability between any two connected states is bigger than or equal to ϵ .

Then by TWT, we can decrease the probability from any state i to any other state j to ϵ with t_{mix} increasing. Therefore, t_{mix} for the original room is bounded by t_{mix} for a red random walk.

Theorem

For any room with s many number of sides and ϵ bottleneck ratio, the mixing time t_{mix} is bounded above by $O(\frac{s^2}{\epsilon})$

Outline

Motivation

- 2 Model and Definitions
- 3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

5 Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

Tilted Tunnel

• Shape

Figure 22: A Tilted Tunnel

Tilted Tunnel

Figure 23: A Tilted Tunnel

$$P\rho(s,h,t) = \rho(s,h,t+1) = \frac{1}{B} \iint_{D_B} \rho(u,r,t) du dr$$
(17)

$$\begin{split} \rho(s,h,t+1) &= \sum_{k=0}^{\infty} a_k (t+1) e^{2\pi i k s/L} = \frac{1}{B} \iint_{D_B} \rho(u,r,t) du dr \\ &= \frac{1}{B} \iint_{D_B} \sum_{k=0}^{\infty} a_k (t) e^{2\pi i k u/L} du dr = \frac{1}{B} \sum_{k=0}^{\infty} \iint_{D_B} a_k (t) e^{2\pi i k u/L} du dr \end{split}$$

Shun Yang Chang He

-

Mixing Time in Robotic Explorations

Tilted Tunnel

$$a_k(t+1)e^{2\pi i k s/L} = \frac{1}{B} \iint_{D_B} a_k(t)e^{2\pi i k u/L} du dr$$
(18)

$$a_k(t+1) = \frac{L^2 \sin^2(2\alpha)}{4\epsilon^2 k^2 \pi^2} \sin(\frac{2\epsilon k\pi}{L\sin(2\alpha)}) a_k(t) = \Phi(k) a_k(t)$$
(19)

where $\Phi(k)$ is the eigenvalues in this case. When k = 1, such value is the second largest.

Theorem (Mixing Time For Tilted Tunnel)

For a Tunnel of length L and width ϵ , where $\epsilon \ll L$, the mixing time t_{mix} is on the order of $O(\frac{\sin^2(2\alpha)L^2}{\epsilon^2})$

Bent Tunnel

Conjecture

For any bent tunnel L with width ϵ , where $\epsilon \ll L$, we denote $\alpha(s)$ as the angle of the tunnel with horizontal axis at point s. Then

$$t_{rel} = \frac{3}{4\pi^2 \epsilon^2} (\int_L |\sin(2\alpha(s))| ds)^2$$
(20)

Experimentation:

Figure 24: An Example

Figure 25: Discretization

Bent Tunnel

Some data: 90 by 90 pixels discretization

Figure 26: Expected Result to Discretizated Result

Outline

Motivation

- 2 Model and Definitions
- 3 A Simple Room Example

Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example

Tunnel

- Tilted Tunnel
- Bent Tunnel

6 References

- David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, *Markov Chains and Mixing Time*, American Mathematical Soc, 2009.
- Miroslav Fiedler, *Algebraic Connectivity of Graphs*, Czechoslovak Math. J. 23(98): 298 305, 1973.
- P. J. Davis, Circulant Matrices, Wiley-Interscience, NY, 1979
- Many thanks to Yuliy Baryshnikov, Maxim Arnold and Stefan Klajbor Goderich.