Mixing Time in Robotic Explorations

Chang He^{1} and Shun Yang ${ }^{2}$

August 7, 2015

[^0]
Outline

(1) Motivation

(2) Model and Definitions

(3) A Simple Room Example
(4) Pooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(5) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

Motivation

- Roomba

Outline

(1) Motivation

(2) Model and Definitions
(3) A Simple Room Example
(4) Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(3) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

Model and Definitions

Room

$\left\{A_{j}=\left[a_{j}, b_{j}\right] \times\left[c_{j}, d_{j}\right]\right\}_{j=1}^{n} \backslash \partial A \backslash w$ $w:=\left\{w_{1}, w_{2}, \cdots\right\}$ is the set of interior walls.

Figure 1: Possible paths taken by the point robot

Model and Definitions

Motion of the point robot

- Horizontal move h_{i} and Vertical Move h_{i}

Model and Definitions

Motion of the point robot

- Horizontal move h_{i} and Vertical Move v_{i}.
- Step: an ordered pair of moves $\left(h_{i}, v_{i}\right)$.

Model and Definitions

Definition of regions

Figure 2: Possible paths of robot starting from the red circle

Figure 3: Definition of regions in a typical room configuration

Definition (Markov Chain)

A finite Markov Chain is a process which moves among the elements of a finite set Ω so that when at $x \in \Omega$, the next state is chosen according to a fixed probability distribution $P(x, \cdot)$.

Definition (Transition Matrix)

The matrix P that that represents the Markov process with state space Ω is called the transition matrix. P is stochastic. That is, for all $x^{t h}$ row of $P, P(x, \cdot)$ satisfies:

$$
\begin{equation*}
\sum_{y \in \Omega} P(x, y)=1 \tag{1}
\end{equation*}
$$

Definition (Transition Matrix)

The matrix P that that represents the Markov process with state space Ω is called the transition matrix. P is stochastic. That is, for all $x^{t h}$ row of $P, P(x, \cdot)$ satisfies:

$$
\begin{equation*}
\sum_{y \in \Omega} P(x, y)=1 \tag{1}
\end{equation*}
$$

Theorem

Every eigenvalue λ of a stochastic matrix P satisfies $|\lambda| \leq 1$.

Definition (Stationary Distribution)

A stationary distribution π on Ω satisfies:

$$
\begin{equation*}
\pi=\pi P \tag{2}
\end{equation*}
$$

Model and Definitions

- Irreducibility :

A transition matrix P is irreducible if $\forall x, y \in \Omega$, there exists integer t such that $P^{t}(x, y)>0$.

- Aperiodicity:

Period is the greatest common divisor of $\tau(x):=\left\{t \geq 1: P^{t}(x, x)>0\right\}$. A transition matrix P is aperiodic if all states have period 1.

- Reversibility:

A transition matrix is reversible if it satisfies:

$$
\begin{equation*}
\pi(x) P(x, y)=\pi(y) P(y, x) \quad \text { for all } \quad x, y \in \Omega \tag{3}
\end{equation*}
$$

Definition

The total variation distance ($T V$) between two probability distribution μ and v on Ω is defined as the maximum difference between the probabilities assigned to a single event by the two distributions:

$$
\begin{equation*}
\|\mu-v\|_{T V}=\max _{A \subset \Omega}|\mu(A)-v(A)| \tag{4}
\end{equation*}
$$

Model and Definitions

Theorem (Convergence Theorem)

Suppose that P is irreducible and aperiodic, with stationary distribution π. For all t, there exists constants $\alpha \in(0,1)$ and $C>0$ such that:

$$
\begin{equation*}
\max _{x \in \Omega}\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq C \alpha^{t} \tag{5}
\end{equation*}
$$

Model and Definitions

Definition (Mixing Time)

Let $d(t):=\max _{x \in \Omega}\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$, then the mixing time $t_{\text {mix }}$ is defined by:

$$
\begin{equation*}
t_{m i x}(\delta):=\min \{t: d(t) \leq \delta\} \tag{6}
\end{equation*}
$$

Model and Definitions

Definition (Mixing Time)

Let $d(t):=\max _{x \in \Omega}\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$, then the mixing time $t_{\text {mix }}$ is defined by:

$$
\begin{equation*}
t_{\operatorname{mix}}(\delta):=\min \{t: d(t) \leq \delta\} \tag{6}
\end{equation*}
$$

Choose $\delta=1 / 100$, and

$$
t_{m i x}:=t_{m i x}(1 / 100)
$$

Outline

(1) Motivation

(2) Model and Definitions
(3) A Simple Room Example
(4) Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(5) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

A Simple Room

Figure 4: A simple Room

A Simple Room

Figure 4: A simple Room

Figure 5: Labeled regions

A Simple Room

$$
\left.P=\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array} \begin{array}{cccc}
1-\epsilon & 0 & \epsilon & x_{3} \\
x_{4} \\
0 & 1-\epsilon & 0 & \epsilon \\
\frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2} \epsilon & \frac{1}{2} \epsilon \\
\frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2} \epsilon & \frac{1}{2} \epsilon
\end{array}\right) .
$$

A Simple Room

Relaxation time $t_{\text {rel }}$

- P is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$
\begin{equation*}
1=\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{|\Omega|}\right| \geq-1 \tag{7}
\end{equation*}
$$

A Simple Room

Relaxation time $t_{\text {rel }}$

- P is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$
\begin{equation*}
1=\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{|\Omega|}\right| \geq-1 \tag{7}
\end{equation*}
$$

- Spectral gap of P is $\gamma:=1-\left|\lambda_{2}\right|$

A Simple Room

Relaxation time $t_{\text {rel }}$

- P is a reversible and stochastic, so we can label its eigenvalues in descending order:

$$
\begin{equation*}
1=\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{|\Omega|}\right| \geq-1 \tag{7}
\end{equation*}
$$

- Spectral gap of P is $\gamma:=1-\left|\lambda_{2}\right|$

Definition (Relexation Time)

The relaxation time $t_{\text {rel }}$ of P with spectral gap γ is defined as:

$$
\begin{equation*}
t_{r e l}:=\frac{1}{\gamma} \tag{8}
\end{equation*}
$$

A Simple Room

Relation between $t_{m i x}$ and $t_{r e l}$:

Theorem

Let $\pi_{\text {min }}:=\min _{x \in \Omega} \pi(x)$. For a reversible, irreducible and aperiodic Markov chain with state space Ω, the relation between its relaxation time $t_{r e l}$ and $\pi_{\min }$ can be represented as:

$$
\begin{equation*}
\log \left(\frac{1}{\delta \pi_{m i n}}\right) t_{r e l} \geq t_{m i x}(\delta) \geq\left(t_{r e l}-1\right) \log \left(\frac{1}{2 \delta}\right) \tag{9}
\end{equation*}
$$

A Simple Room

Relation between $t_{m i x}$ and $t_{r e l}$:

Theorem

Let $\pi_{\text {min }}:=\min _{x \in \Omega} \pi(x)$. For a reversible, irreducible and aperiodic Markov chain with state space Ω, the relation between its relaxation time $t_{r e l}$ and $\pi_{\min }$ can be represented as:

$$
\begin{equation*}
\log \left(\frac{1}{\delta \pi_{\min }}\right) t_{r e l} \geq t_{m i x}(\delta) \geq\left(t_{r e l}-1\right) \log \left(\frac{1}{2 \delta}\right) \tag{9}
\end{equation*}
$$

Therefore, $t_{m i x}$ and $t_{r e l}$ are on the same order.

A Simple Room

- Computation Results: $\left|\lambda_{2}\right|=1-\epsilon$

$$
t_{m i x}=1 / \gamma=1 /(1-\epsilon)=\Theta\left(\frac{1}{\epsilon}\right)
$$

$$
P=\begin{gathered}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{gathered}\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
1-\epsilon & 0 & \epsilon & 0 \\
0 & 1-\epsilon & 0 & \epsilon \\
\frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2} \epsilon & \frac{1}{2} \epsilon \\
\frac{1}{2}(1-\epsilon) & \frac{1}{2}(1-\epsilon) & \frac{1}{2} \epsilon & \frac{1}{2} \epsilon
\end{array}\right) .
$$

- Computation Results: $\left|\lambda_{2}\right|=1-\epsilon$ $t_{m i x}=1 / \gamma=1 /(1-\epsilon)=\Theta\left(\frac{1}{\epsilon}\right)$.
- Simulation Results:

Figure 6: Simulation Results $n=100$ and $\epsilon=0.001$

Figure 7: Simulation Results $n=1000$ and $\epsilon=0.001$

Proposition
 Horizontal (vertical) scaling does not change $t_{m i x}$.

Proposition

Horizontal (vertical) scaling does not change $t_{m i x}$.

Definition (Bottleneck Ratio)

After scaling the room to unit dimensions, we define the length of the smallest horizontal (vertical) gap as ϵ, which is also the bottleneck ratio.

Outline

(1) Motivation

(C) Model and Definitions
(3) A Simple Room Example
(4) Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(5) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

Comb Room

Figure 8: A "Comb" Shape Room With $N=6$

Comb Room: Matrix Approach

$$
P=\left(\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right)
$$

$P_{11}=(1-\epsilon) I$,
$P_{12}=\epsilon I$,
$P_{21}=\frac{1-\epsilon}{N} J$
$P_{22}=\frac{\epsilon}{N} J$.
I is the $N \times N$ identity matrix, and J is the $N \times N$ matrix with all entries being one.

Comb Room

- $\left|\lambda_{2}\right|=1-\epsilon$
- $t_{m i x}=\Theta(1 / \epsilon)$

Snake Room (ouroboric)

Figure 9: An Ouroboric Snake Shape Room With $N=6$

Ouroboric Snake

Figure 10: An Ouroboric Snake

Circulant Matrix for ouroboric Snake Room

$$
\begin{aligned}
& \\
& x_{3 n-2} \\
& x_{3 n-1} \\
& x_{3 n}
\end{aligned}\left(\begin{array}{ccccccccc}
x_{3 n-5} & x_{3 n-4} & x_{3 n-3} & x_{3 n-2} & x_{3 n-1} & x_{3 n} & x_{3 n+1} & x_{3 n+2} & x_{3 n+3} \\
\frac{\epsilon}{2} & \frac{1-2 \epsilon}{2} & \frac{\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2 \epsilon}{2} & \frac{\epsilon}{2} & & & \\
& & & \frac{\epsilon}{2} & 1-2 \epsilon & \epsilon & & & \\
& & & \frac{\epsilon}{2} & \frac{1-2 \epsilon}{2} & \frac{\epsilon}{2} & \frac{\epsilon}{2} & \frac{1-2 \epsilon}{2} & \frac{\epsilon}{2}
\end{array}\right)
$$

The $k^{t h}$ eigenvectors r_{k} has the form:

$$
r_{k}=\left[\begin{array}{c}
a \\
b \\
c \\
a e^{2 \pi i k / N} \\
b e^{-2 \pi i k / N} \\
c e^{-2 \pi i k / N} \\
\vdots \\
a e^{-2 \pi i k(N-1) / N} \\
b e^{-2 \pi i k(N-1) / N} \\
c e^{-2 \pi i k(N-1) / N}
\end{array}\right]
$$

where $k=0,1,2, \cdots, N-1$ and a, b, c are three constants depending on N and k.

The $k^{t h}$ eigenvectors r_{k} has the form:

$$
r_{k}=\left[\begin{array}{c}
a \\
b \\
c \\
a e^{2 \pi i k / N} \\
b e^{-2 \pi i k / N} \\
c e^{-2 \pi i k / N} \\
\vdots \\
a e^{-2 \pi i k(N-1) / N} \\
b e^{-2 \pi i k(N-1) / N} \\
c e^{-2 \pi i k(N-1) / N}
\end{array}\right]
$$

where $k=0,1,2, \cdots, N-1$ and a, b, c are three constants depending on N and k.
$\lambda\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{ccc}\epsilon / 2\left(1+e^{\frac{2 \pi i k}{N}}\right) & (1 / 2-\epsilon)\left(1+e^{\frac{2 \pi i k}{N}}\right) & \epsilon / 2\left(1+e^{\frac{2 \pi i k}{N}}\right) \\ \epsilon & 1-2 \epsilon & \epsilon \\ \epsilon / 2\left(1+e^{\frac{-2 \pi i k}{N}}\right) & (1 / 2-\epsilon)\left(1+e^{\frac{-2 \pi i k}{N}}\right) & \epsilon / 2\left(1+e^{\frac{-2 \pi i k}{N}}\right)\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$

- Trace: $1-\epsilon+\epsilon \cos \left(\frac{2 \pi k}{N}\right)$
- When $k=1$,

$$
t_{m i x}=\frac{1}{\epsilon\left(1-\cos \left(\frac{2 \pi k}{N}\right)\right)} \approx \frac{N^{2}}{2 \pi^{2} \epsilon}
$$

which is of $\Theta\left(N^{2} / \epsilon\right)$.

Non-ouroboric Snake

- Shape

Figure 11: non-ouroboric snake shape

Non-ouroboric Snake

- Coupling Method
- Definitions

Definition (Coupling of Markov Chains)

A coupling of Markov chains with transition matrix P is a process $\left(X_{t}, Y_{t}\right)_{t=0}^{\infty}$ with the property that both $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ are Markov chains with transition matrix P, although the two chains may have different starting distribution.

Definition $\left(t_{\text {coup }}\right)$

The coupling time $t_{\text {coup }}:=\min \left\{t: X_{t}=Y_{t}\right\}$

Non-ouroboric Snake

- Coupling Method
- How to bound $t_{\text {mix }}$

Theorem

Suppose that for each pair of states $x, y \in \Omega$ there is a coupling $\left(X_{t}, Y_{t}\right)$ with $X_{0}=x$ and $Y_{0}=y$. Then, for each such coupling,

$$
\begin{equation*}
d(t) \leq \max _{x, y \in \Omega} P_{x, y}\left\{t_{\text {coup }}>t\right\} \tag{10}
\end{equation*}
$$

Theorem (Markov's Inequality)

If X is any nonnegative random variable and $a>0$, then

$$
\begin{equation*}
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a} \tag{11}
\end{equation*}
$$

Corollary

$$
\begin{equation*}
t_{m i x} \leq 100 E_{x, y}\left(t_{\text {coup }}\right) \tag{12}
\end{equation*}
$$

Non-ouroboric Snake

- Coupling Method
- Design a coupling

Definition (Specific coupling design for this case)

For any two points x, y, at each step, let x move first and then y move. At each step, y always moves to the same vertical height as x. If x and y are in the same chamber, then y also moves to the same horizontal location as x.

Theorem (Observation)

$E_{x, y}\left(t_{\text {coup }}\right)$, in this case, is bounded above by the expected time for one point to move from the first chamber to the last chamber.

Non-ouroboric Snake

- Redefine States

Figure 12: Simplified States

Non-ouroboric Snake

- Random Walk On A Graph

Figure 13: Simplified Random Walk On A Graph

Non-ouroboric Snake

- Solve expected time from x_{1} to x_{N} : If we denote the expected time of moving from the $n^{t h}$ chamber to the last chamber (the $N^{t h}$) as $T(n)$, then we would easily obtain a following recurrence relation:

$$
\begin{equation*}
T(n+1)-2 T(n)+T(n-1)+1 / \epsilon=0 \tag{13}
\end{equation*}
$$

with boundary conditions:

$$
\begin{equation*}
T(0)=T(1)+2 / \epsilon, \quad T(N)=0 \tag{14}
\end{equation*}
$$

Non-ouroboric Snake

- Bound mixing time $t_{m i x}$: After solving this relation, we find that

$$
\begin{equation*}
T(n)=-\frac{3 n}{2 \epsilon}-\frac{n^{2}}{2 \epsilon}+\frac{3 N}{2 \epsilon}+\frac{N^{2}}{2 \epsilon} \tag{15}
\end{equation*}
$$

Therefore we would have
$t_{\text {mix }} \leq 100 \cdot E\left(t_{\text {coup }}\right) \leq 100 \cdot T(0)=\frac{150 N}{\epsilon}+\frac{50 N^{2}}{\epsilon}$. Therefore, we know that the mixing time $t_{\text {mix }}$ in this case is also bounded above by $O\left(\frac{N^{2}}{\epsilon}\right)$.

A Lego Room

Definition

A room is a n-Lego room if and only if it consists of n unit chambers and each chamber is connected to at least one other chamber. The walls between any two connected chamber is of length $1-\epsilon$.

Figure 14: An Example of 5-Lego Room

A Lego Room

- Random Walk

Figure 15: The Equivalent Random Walk On a Graph

A Lego Room

Theorem (The Wall Theorem)

The mixing time $t_{m i x}$ for a room increases when the length of one wall is extended and decreases when it is shortened.

Corollary (Special Case Of The Wall Theorem)

For any random walk on a graph G, if the probability between state i and state j is decreased (the probability of staying in i and j is increased), then the mixing time $t_{\text {mix }}$ for this process increases. If such probability is increased, then $t_{m i x}$ decreases.

A Lego Room

Transformation by the previous Corollary:

Figure 16: A transformation that decreases mixing time

A Lego Room

Transformation by TWT and its Corollary:

Figure 17: A transformation that increases mixing time

A Lego Room

Definition

A red random walk on a graph G is a random walk such that the probability from any vertex i to vertex j of G (in one step) is either 0 or $q \epsilon$, where q is a constant for this walk.

Figure 18: Transformation 1

Figure 19: Transformation 2

A Lego Room

Definition (Laplacian Matrix)

Let $G=(V, E)$ be a non-directed finite graph. Let V be the set of vertices and $|V|=N$. Then after choosing a fixed ordering $w_{1}, w_{2}, \ldots, w_{N}$ of the set V, the Laplacian matrix is the N by N matrix $A(G)$ whose diagonal entries $a_{i i}$ being the valencies of vertex i and off diagonal entries $a_{i j}=a_{j i}=-1$ if vertex i and j are connected and 0 otherwise.

Definition (Algebraic Connectivity)

Let $n \geq 2$ and $0 \leq \lambda_{1} \leq \lambda_{2}=a(G) \leq \lambda_{3} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of the matrix $A(G)$. The algebraic connectivity of the graph G is the second smallest eigenvalue $a(G)$.

A Lego Room

Theorem (Fiedler, 1973)

Denote $e(G)$ as the edge connectivity of a connected graph G, which is the minimal number of edges whose removal would result in losing connectivity of the graph G. Then for any G, we have

$$
\begin{equation*}
N \geq a(G) \geq e(G)(1-\cos (\pi / N)) \tag{16}
\end{equation*}
$$

Notice that the second largest eigenvalue of transition matrix P for a red random walk on G is $\lambda_{2}=1-q \epsilon a(G)$.

Theorem (Mixing Time for A Lego Room)

If a room is a N-Lego room, then the mixing time $t_{m i x}$ for this room is bounded below from $O\left(\frac{1}{N \epsilon}\right)$ and bounded above by $O\left(\frac{N^{2}}{\epsilon}\right)$.

A General Room

Figure 20: A Room

Figure 21: Adding Walls

A General Room

Lemma

For any room, the number of states is on the order of $O(s)$, where s is the number of sides.

Lemma

The probability between any two connected states is bigger than or equal to ϵ.

Then by TWT, we can decrease the probability from any state i to any other state j to ϵ with $t_{m i x}$ increasing. Therefore, $t_{\text {mix }}$ for the original room is bounded by $t_{\text {mix }}$ for a red random walk.

Theorem

For any room with s many number of sides and ϵ bottleneck ratio, the mixing time $t_{\text {mix }}$ is bounded above by $O\left(\frac{s^{2}}{\epsilon}\right)$

Outline

(1) Motivation

(2) Model and Definitions
(3) A Simple Room Example
(1) Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(5) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

Tilted Tunnel

- Shape

Figure 22: A Tilted Tunnel

Tilted Tunnel

Figure 23: A Tilted Tunnel

$$
\begin{gathered}
P \rho(s, h, t)=\rho(s, h, t+1)=\frac{1}{B} \iint_{D_{B}} \rho(u, r, t) d u d r \\
\rho(s, h, t+1)=\sum_{k=0}^{\infty} a_{k}(t+1) e^{2 \pi i k s / L}=\frac{1}{B} \iint_{D_{B}} \rho(u, r, t) d u d r \\
=\frac{1}{B} \iint_{D_{B}} \sum_{k=0}^{\infty} a_{k}(t) e^{2 \pi i k u / L} d u d r=\frac{1}{B} \sum_{k=0}^{\infty} \iint_{D_{B}} a_{k}(t) e^{2 \pi i k u / L} d u d r
\end{gathered}
$$

Tilted Tunnel

$$
\begin{gather*}
a_{k}(t+1) e^{2 \pi i k s / L}=\frac{1}{B} \iint_{D_{B}} a_{k}(t) e^{2 \pi i k u / L} d u d r \tag{18}\\
a_{k}(t+1)=\frac{L^{2} \sin ^{2}(2 \alpha)}{4 \epsilon^{2} k^{2} \pi^{2}} \sin \left(\frac{2 \epsilon k \pi}{L \sin (2 \alpha)}\right) a_{k}(t)=\Phi(k) a_{k}(t) \tag{19}
\end{gather*}
$$

where $\Phi(k)$ is the eigenvalues in this case. When $k=1$, such value is the second largest.

Theorem (Mixing Time For Tilted Tunnel)

For a Tunnel of length L and width ϵ, where $\epsilon \ll L$, the mixing time $t_{\text {mix }}$ is on the order of $O\left(\frac{\sin ^{2}(2 \alpha) L^{2}}{\epsilon^{2}}\right)$

Bent Tunnel

Conjecture

For any bent tunnel L with width ϵ, where $\epsilon \ll L$, we denote $\alpha(s)$ as the angle of the tunnel with horizontal axis at point s. Then

$$
\begin{equation*}
t_{\text {rel }}=\frac{3}{4 \pi^{2} \epsilon^{2}}\left(\int_{L}|\sin (2 \alpha(s))| d s\right)^{2} \tag{20}
\end{equation*}
$$

Experimentation:

Figure 24: An Example

Figure 25: Discretization

Bent Tunnel

Some data: 90 by 90 pixels discretization

Figure 26: Expected Result to Discretizated Result

Outline

(1) Motivation

(C) Model and Definitions
(3) A Simple Room Example
(4) Rooms

- Comb Room and Snake Room
- A Lego Room
- A General Room Example
(5) Tunnel
- Tilted Tunnel
- Bent Tunnel
(6) References

References

- David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Markov Chains and Mixing Time, American Mathematical Soc, 2009.
- Miroslav Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Math. J. 23(98): 298-305, 1973.
- P. J. Davis, Circulant Matrices, Wiley-Interscience, NY, 1979
- Many thanks to Yuliy Baryshnikov, Maxim Arnold and Stefan Klajbor Goderich.

[^0]: ${ }^{1}$ Centre College
 ${ }^{2}$ Carleton College

