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Hinge Structures

Definition
A hinge structure is a piecewise linear embedding
of I = [0, 1] into R3. We call the hinge vectors
v0, v1, . . . , vk−1 and the vertices p0, p1, . . . , pk
(vi = pi+1 − pi). In a closed configuration, p0 = pk.
(For closed structures, we have an embedding of S1.)
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Singularities
The angles between consecutive hinge vectors are
fixed, but the hinges are free to rotate.

The set of positions is parametrized by the
k − 1-dimensional torus, T k−1, and we have a map
τ : T k−1 −→ W1(R3), which gives the position of an
end-frame that we attach to pk−1.

We are looking for configurations x ∈ T k−1 where τ
has a singularity. In other words, we want to find all
the positions where the motion of τ is restricted.

Definition
A hinge structure is singular in a given
configuration x if τ is singular at x.

Singularities of Hinge Structures



Introduction

Vector Fields

Fibrations

Javelins

5

Exterior Vectors

Definition
The exterior (or wedge) product, denoted by ∧,
is a multilinear operation on a vector space V that is
associative and collapses v ∧ v to 0.

Exterior products are anticommutative:
v ∧ w = −w ∧ v.

For any vector space V over a field F , the set

V ∧ V ∧ · · · ∧ V︸ ︷︷ ︸
n times

=
n∧
V

is also a vector space over F .
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Associated Vectors

Definition
The associated exterior vector αi to a hinge vi is
the exterior 2-vector αi = (e4 + pi) ∧ vi.

It has been shown [Borcea, et. al] that a
configuration is singular if and only if its associated
exterior vectors don’t span R4 ∧ R4.

Corollary

Singularity is preserved by linear transformations.

Theorem (Projective Intersection Theorem)

If there exists a line that intersects or is parallel to
each hinge, the configuration is singular.
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Helical Vector Fields
If a hinge structure is singular, the exterior vectors
corresponding to hinges all lie in some hyperplane.

Theorem (Helicity Theorem)

A closed hinge structure is singular if and only if
there is some vector field V on R3 of the form

V (~x) = (~x− ~a)× ~n+ c ∗ ~n

that for every vertex pi and hinge vector
vi = pi+1 − pi satisfies

V (pi) · vi = 0

We call V a helical vector field, or helicity.
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A Single Helicity
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Reformulation

A helical vector field V has the property that if a
straight line γ satisfies

γ̇(t) · V (γ(t)) = 0.

for some t ∈ R, then it satisfies this equation for all
real t. This is a very nice property.

Theorem (Helicity Theorem, Reformulated)

A closed hinge structure H is singular if and only if
there exists a helical vector field to which H,
considered as a piecewise linear loop, travels at all
times perpendicular.
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Hyperboloids

Take the set of all vectors based in some plane
perpendicular to the symmetry axis. The span of all
the vectors is a partition of R3 by lines. This is a
very special property of V .

If we consider only the subset of vectors whose
basepoints lie some fixed distance from the
symmetry axis, we get a hyperboloid. This means
that given our planar subset of R3, V induces a
partition of R3 determined by this choice of plane.
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Ruled Lines

From Wikipedia.org. Image licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported license.
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What Is the Hopf Fibration?

Definition
The Hopf fibration is a many-to-one continuous
map from the three-sphere to the two-sphere where
the preimage of each point is a great circle. It is a
way to locally write S3 as S1 × S2.

If we embed R3 into R4 like before, we can “map”
R3 onto S3 by sending the point p to ±p/||p|| and
projectively completing.

Theorem (Hopf Fibration Theorem)

For c = 1 and the symmetry axis of V coinciding
with the z-axis in R3, the ruled lines of the
hyperboloids are the fibers of the Hopf fibration.
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The Hopf Fibration

From Wikipedia.org. Image licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported license.
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Classification by Fibrations

Definition
The hinge-normal vector ni corresponding to the
ith vertex pi is given by ni = vi−1 × vi.

Suppose that we translate all hinge-normal vectors
along the symmetry axis so that their basepoints are
coplanar. Then the configuration is singular if and
only if every resulting vector lies along a ruled line.

Theorem (Fibration Theorem)

If we have a singular configuration and we translate
our hinge-normal vectors like above, then there exists
a fibration of S3 over S2 with great circles as fibers
that sends the hinge-normal vectors to single points.
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What Is a Javelin?

Definition
A javelin Ji corresponding to the ith vertex pi is
the line given by the intersection of the two planes
determined the sets {pi−2, pi−1, pi} and
{pi, pi+1, pi+2}, where we take the indices modulo k
if necessary.
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Why Javelins?

I Question: How do you determine when a hinge
structure is singular?

I Can move along javelins and stay singular.

I Know the value of the helical vector field on the
javelins, if it exists
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Algorithm for Determining

Singularity
I Want to first find upward direction for helicity

I Value of the vector field on “sphere at infinity”

I Once upward direction is known, can project
onto plane perpendicular to the upward
direction

I Simple trigonometry to get the axis of the
helicity

I Upward rise of vector field relative to plane
perpendicular gives c
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5 Points Theorem

I Take any five points in R3 that don’t all lie in a
plane

I Then the vectors Ĵi × (pi+1 − pi−1) all lie in
some plane
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Space of Singular Configurations

I We can move vertices along javelins and stay
singular

I Through such motions, we can collapse any
hinge structure to a point

I Space of singular configurations is maybe a
“cone”
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Further Directions

I Flowing a hinge structure along javelins

I Configuration spaces of hinge structures

I Schubert calculus
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