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Focus: Topological Data Analysis. The proposed sample projects revolve around the ex-
ploratory analysis and classification of datasets using ideas from applied algebraic topology
and metric geometry, and emphasize the computational aspect of the ideas.

1 Background

Many datasets can be modeled as finite metric spaces. Given a finite metric space X = (X, dX),
for a given scale parameter ε ≥ 0 one considers Rε(X ), the Vietoris-Rips simplicial complex
associated to X . Its vertex set is X and its simplices are all non-empty σ ⊂ X s.t. diam(σ) ≤ ε.
Given a field F and a non-negative integer k one can then associate to X the vector space
Hk(Rε(X ),F) produced by the homology functor applied to the Vietoris-Rips complex of X
at scale ε. Some indication about the number of connected components, loops, etc in X at
scale ε can be obtained in this way. This methodology has the drawback that these numbers of
connected components and so forth can change dramatically with the scale ε. It then becomes
apparent that a more suitable idea is to try to track homology generators accross scales, which
is the main idea behind Persistent Homology.

Persistent Homology

If 0 = ε0 < ε1 < . . . εm are the different values attained by the distance function dX , then we
have the inclusions: Rε0(X ) ⊆ Rε1(X ) ⊆ · · · ⊆ Rεm(X ), i.e. a simplicial filtration which we
denote by R(X ). Applying the homology functor Hk(·,F) to the above diagram one obtains a
diagram of vector spaces and linear maps

V = Vε0 → Vε1 → · · · → Vεm (1)

where each Vεi := Hk(Rεi(X ),F). Any such diagram of vector spaces is called a persistence
module and can be decomposed [5] up to isomorphism as the direct sum of interval persistence
modules : diagrams of the form

I(b, d) = 0→ · · · → 0→ F 1→ · · · 1→ F 0→ 0→ · · · → 0,

where b ≤ d represent the first and last index of appearance of F in the sequence. The upshot is
that to any finite metric space X and non-negative integer k one can assign a persistence diagram
Dk(X ) consisting precisely of a finite index set A together with pairs (bα, dα) ∈ R2

+, bα ≤ dα for
each α ∈ A, such that the persistent module given by (1) is isomorphic to

⊕
α∈A I(bα, dα). Per-

sistence diagrams of finite metric spaces can be computed in polynomial time [8]. Furthermore,
for fixed k, the map X 7→ Dk(X ) is 2-Lipschitz: on the one hand one endows the collection
M of all finite metric spaces with the Gromov-Hausdorff distance dGH and on the other one
considers D the collection of all finite multisets of pairs of points (b, d) ∈ R2

+, b ≤ d, and endows
this collection with the so called bottleneck distance dB. Then,
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Theorem 1 ([6]). For any non-negative integer k and all X ,Y ∈M,

2 dGH(X ,Y) ≥ dB(Dk(X ),Dk(Y)).

The computation of the Gromov-Hausdorff distance between finite metric spaces is NP-
hard in general [12]. In contrast, computing the bottleneck distance can be done in polynomial
time [8]. Thus, the stability theorem above suggests that using persistent diagrams for data
classification is a promising approach.

2 Activities
Mini-course: Persistent Homology from the computational viewpoint. The main
ideas of PH will be introduced via a tutorial combining theoretical concepts with their software
implementation. The Matlab frontend of javaplex will be used for all demostrations, tutorials,
and all applications. The package is freely available from http://appliedtopology.github.

io/javaplex/ and it is readily distributed together with an excellent tutorial that guides
students both though the landscape of theoretical ideas and their immediate computational
implementation. We envision covering both simplicial homology (with field coefficients) and its
computation at the same time: we will be complementing standard definitions with the basic
methods from linear algebra for reducing matrices and effectively finding bases for homology.
These methods are readily implemented by javaplex. We will then introduce functoriality and
progress to the concept of persistent homology and its computation.

Mini-course: Distances between Metric Spaces and applications. The main ideas
behind the construction and applications of the Gromov-Hausdorff distance will be presented
in a series of lectures.

Mini-course: Topological Time Series Analysis. Time series are ubiquitous in today’s
data rich world, so naturally their analysis is a fundamental object of study. In recent years,
tools from the growing field of topological data analysis have been adapted to the analysis of
time series data. In short, time series can be transformed into high-dimensional point clouds
(via delay-embeddings) and their shape can be probed via persistent homology to quantify
characteristics such as periodicity, quasiperiodicity, existence of motifs, presence of dynamic
chaos, etc [13, 14]. This mini-course we will cover some of the theory behind topological time
series analysis, and will explore applications ranging from biology to music analysis.

3 Projects
Projects are designed to blend theoretical elements with the computational exploration of real
datasets. Students will explore PH ideas from different angles related to the classification of
datasets into different categories.

Shape Classification. In the problem of shape categorization under deformations one is
presented with a database of 2D or 3D shapes which need to be clustered into ”geometrically
similar” groups. For instance, the shapes in the database could comprise 3D scans of humans,
furniture, animals, where the same subject may be present in the database in different poses.
This situation is often dealt with by modeling the shapes as finite metric spaces: each shape
X is endowed with the path-length distance arising from a suitable geometric graph induced
the point cloud representing the shape. This choice of the metric ensures that different poses
of the same object will in practice be quasi-isometric.

Students will implement the whole pipeline leading to the computation of the bottleneck
distance between persistence diagrams associated to shapes. Then several different databases
of shapes (such as [15]) will be classified using these algorithms.
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Action recognition. Algorithms for the automatic detection and recognition of human ac-
tions, such as walking, running, jumping, from real time data, are useful in applications span-
ning security, sports, healthcare, amongst others. This project will deal with the problem of
action recognition from video data. By studying the periodicity structure of sequences of im-
ages one can classify video sequences into different activities. Students will use techniques from
topological time series analysis to classify video sequences such as http://www.nada.kth.se/
cvap/actions/.

Feature Selection from Persistent Diagrams. A further step in the direction of classi-
fying shapes is related to coordinatizing the space (D, dB) of persistence diagrams [1]. This
permits invoking powerful machine learning techniques in order to build classifiers.

Students will explore a choice of coordinates proposed by Sara Kalisnik in [9] which are
stable under bottleneck distance. The goal is to find salient features/coordinates that permit
efficient classification of shapes/datasets into groups reflecting different ”hypotheses” (e.g. the
different type of objects in the case of a database of shapes).

Local Persistence Diagrams. The construction of the Rips filtration of a finite metric space
and subsequent persistence diagrams operated at the global level. A question of great interest
is to localize such constructions while retaining stability. One construction that students will
study can be described as follows: Given a dataset X = (X, dX), and λ ≥ 0 to each point
x ∈ X assign the filtration Rλ

x(X) where for each ε ≥ 0, σ ⊆ X is in the ε-slice of the filtration
if and only if max

(
diam(σ), λ ·maxp∈σ dX(x, p)

)
≤ ε; when λ = 0 this reduces to the (global)

Rips filtration R(X ) of X . Students will study the stability properties of this construction and
variants, together with its computational applications and performance for classifying shapes
in a database.

Configuration spaces. Given a compact metric space (X, dX) and a natural number n
Gromov considers the n-th curvature set Kn(X) of X: the set comprising all n × n matrices
arising from the restriction of the metric of X to all possible n-tuples (possibly with repetition).
These invariants are strong: It is known that the sequenceK1(X), K2(X), K3(X), . . . determines
(X, dX) up to isometry. However, very little else is currently known about these invariants. One
known example is K3 of spheres: whereas K3(S1) ' S2 [12], one has K3(Sn) ' ∗ for all n ≥ 2.
But more information is available since each Kn(X) can itself be regarded as a metric space
when endowed with the metric coming from the `∞ matrix norm — in particular one can study
each curvature set via PH. In this project students will explore the characterization of curvature
sets of spheres and tori using persistent homology constructions on random samples taken from
these manifolds.

Künneth formula for persistent homology. In this project students will explore the
following situation: Given two finite metric spaces X = (X, dX) and Y = (Y, dY ) and an
assignment prod(X ,Y) of a metric on X ×Y , express the persistence diagrams of the Vietoris-
Rips filtration R(prod(X ,Y)) based on those of R(X ) and R(Y).

Classification of Music Data Streams: Music Information Retrieval. Many musical
streams may be represented by a similarity matrix [10, 11]. As such, these datasets are amenable
to analysis via TDA related ideas. In this projects students will apply Persistent Homology
techniques in order to automatically classify databases of song data into different genres.

Analysis of hippocampal networks. It is believed that ensembles of cells in the hip-
pocampus of animals have the ability of storing spatial memories [4, 3, 7]. These cell ensembles
produce time series data in the form of spike trains. In the course of a certain time interval,
experimentalists obtain spike trains from about a hundred different hippocampal cells. The
concerted spiking patterns of these ensembles of cells encode for the location of an animal in-
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side its habitual environment, and it is believed that the by studying these patterns one can
recover structural information about the environment itself: how many obstacles are there in
the environment? how many different tunnels, etc? One approach for answering these ques-
tions relies on representing these cell ensembles as networks : directed weighted graphs with
vertex set coinciding with the set of cells. The weights associated to a directed edge are often
defined to be the time-delayed correlation of the spike trains corresponding to the two interven-
ing cells. Methods based on computing the persistent homology of these networks have been
demonstrated to successfully recover some topological features of the environment.

In this project students will (1) learn about this neuroscience problem, will (2) explore
different ways of encoding the co-spiking activity of cells as networks, and (3) will analyze the
resulting networks using PH techniques.

4 Professional Development
Students will learn how to write reports in LATEX. In order to help them develop their commu-
nication skills, each team will be asked to give a 10-15 min. presentation every Friday. Other
students will be encouraged to give feedback. We will hold panels with Brown graduate stu-
dents on (1) graduate school decisions/applications, and (2) graduate fellowships (NSF GRFP,
DoD NDSEG, DOE CSGF).
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