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Mathematical modeling allows one to describe dynamics happening in the real world by translating the knowl-
edge and beliefs of interactions into the language of mathematics. For this reason, mathematical modeling
is a useful technique for describing natural occurrences and addressing questions or testing hypotheses that
may not be feasible to study in reality. The proposed Summer@ICERM 2024 research topics include projects
centered around using mathematical modeling to make predictions and assess both associated preparations
and necessary preventions within the fields of epidemiology, precision nutrition, and sports analytics.

1 Ordinary Differential Equation Models of Disease Transmission
and Control in Long-Term Care Facilities

This project investigates the transmission of the gram-positive, endospore-forming bacterium Clostrid-
ioides difficile (C. difficile) in long-term care facilities (LTCFs). In particular, we will first formulate a
system of ordinary differential equations (ODEs) modeling C. difficile spread in an LTCF that focuses on
identifying the primary routes of transmission and then analyze the system in order to identify and compare
control strategies for reducing healthcare-associated incidence rates.

C. difficile is one of the most common causes of healthcare-associated infections in the United States
[42]. With almost half a million C. difficile infections (CDIs) and 29,000 deaths annually in the U.S., the
corresponding attributable healthcare cost due to C. difficile is over four billion dollars per year [21, 22]. It
has been shown that susceptibility to colonization increases with age, with persons older than 65 years of
age 10 times more likely to contract C. difficile during an outbreak than their younger counterparts [31, 35].
Although the transmission of C. difficile has been widely studied in hospital settings [4, 12, 15, 48, 49, 50],
age is not often a factor considered in these hospital models. According to a 2015 study by the Centers for
Disease Control and Prevention, one out of every three cases of CDI occurs in patients 65 years or older, and
over 100,000 cases develop among LTCF residents in the U.S. each year [20]. A review of epidemiological
models of CDI from 2009-2021 [33] noted that very few models address transmission of C. difficile in LTCFs,
such as nursing homes or skilled nursing facilities. In this work, we will more thoroughly examine the impact
of an individual’s age on the spread of C. difficile by modeling its transmission within LTCFs using multiple
models, such as individual LTCFs, LTCFs in combination with hospitals, and LTCFs together with hospitals
and the local community. These models will aid in understanding the transmission dynamics in healthcare
settings and in determining how to control disease spread by comparing strategies that reduce incidence
rates.

We expect a model of the spread of C. difficile in an LTCF to have notable differences from that of
a hospital. Unlike a hospital that treats a variety of patients from a wide range of age groups, an LTCF
focuses on the care of elderly or disabled individuals. Hospitals and LTCFs also differ in the amount of time
that the patient or resident stays in the facility, the frequency of contacts with healthcare providers, and
the reason for a patient’s stay. Table 1 summarizes many of these key differences [40]. Due to the increased
length of stay for residents in an LTCF, there will likely be a reduced risk of a CDI being introduced from
an admission. While the advanced age of residents will increase the transmission rate of CDI, there will also
likely be a reduction in antibiotic prescriptions in LTCFs associated with the treatment of acute illnesses
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Hospitals LTCFs

Treat patients with acute
illnesses.

Maintain quality of life for
residents with long-term
problems/chronic illnesses.

Patients have daily contact
with physician(s) and hourly
monitoring by nursing staff.

Some residents may not see a
medical provider for weeks if
they are doing well medically.

Patients typically stay in
their individual room.

Residents share a common
dining hall and other spaces
and interact with each other.

Patients are discharged when
their illness or injury has been
cured, or at least temporarily
reduced.

Many residents are free to
come and go.

Age varies depending on
hosptial ward.

Average age is 85 years.

Table 1: Key differences between hospitals and LTCFs.

compared to that of a hospital. Finally, transmission routes will differ due to a reduction in interactions
between residents and healthcare workers (HCWs) and an increase in contacts with other residents. These
assumptions comprise the foundation for our model development.

Our ODE model in [50] was the first of its kind that explicitly incorporated the environmental contamina-
tion of surfaces. This model focused on the spread of C. difficile in a hospital ward and divided patients into
four main classes: (1) resistant patients who cannot be infected with a CDI; (2) susceptible patients who have
recently taken an antibiotic and can become infected with a CDI; (2) colonized, asymptomatic patients; and
(4) diseased, symptomatic patients. In addition to the four patient classes, two compartments were included
to consider the environmental transmission of C. difficile: high- and low-touch fomites, objects or surfaces
that can harbor infectious agents. Results indicated that nearly three-quarters of nosocomial colonizations
were from contact with a high-touch fomite, despite their additional, daily cleaning. Thus, enhanced efficacy
of disinfection upon discharge and extra cleaning of high-touch fomites, reduced contact with high-touch
fomites, and higher discharge rates could lead to a decrease in the incidence of colonized patients.

This project will utilize the same methodology as that of [50] to develop an ODE model of C. difficile
transmission in an LTCF. First, the disease status classes of the residents will be updated to more accurately
reflect the LTCF resident demographics. For example, susceptible residents will have a less restrictive
definition as older age can cause a disruption in the gut microbiota making it easier for C. difficile endospores
to colonize the large intestine, leading to a CDI. Moreover, we will include HCWs that interact with the
residents. Another notable difference between the model in [50] and this project will be the parameter values.
Parameters are the rates included in a mathematical model, derived from literature on studies completed in
healthcare settings. Since we now consider disease spread in an LTCF, these values will need to be updated
to ensure that our simulations accurately represent the dynamics in an LTCF rather than in a hospital.

Moreover, in previous models, we considered colonization only deriving from interactions with a contam-
inated surface, whether high- or low-touch, or with an infected HCW. Since residents of an LTCF are not
confined to their rooms as patients in a hospital ward are, we will need to incorporate infected residents in-
teracting with susceptible residents leading to disease transmission. This will necessitate that certain terms
are changed in the mathematical model, leading to a different model structure. This new structure will
likely lead to new recommendations to limit disease spread. With our model, we aim to answer the following
questions:

1. Which control strategies most effectively mitigate the incidence of C. difficile in an LTCF?
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2. What are the optimal levels of these strategies to reduce both healthcare-associated costs and total
number of CDIs?

After developing the system of ODEs, we will use a combination of literature review and estimation
techniques, such as the method of least squares, to determine appropriate parameter values for our model.
We will then analyze the model with a global sensitivity analysis [37] using Latin Hypercube Sampling
and Partial Rank Correlation Coefficients to determine which parameters lead to the greatest changes in
the incidence of colonization. The results of the sensitivity analysis will inform potential control strategies
to mitigate disease spread in the simulated LTCF and be the basis for applying Optimal Control Theory,
a method that will allow us to determine time-varying, optimal parameters that most effectively reduce
CDI incidence [36]. In our analysis, we include additional control strategies to consider such as decreased
interactions between residents, representing resident lockdown and vaccination strategies. We also aim to
repeat our analysis on expanded versions of the original model that will consider LTCFs in combination
with hospitals and/or the local community. The expanded models will allow us to incorporate additional
transmission pathways as residents can come and go freely and may be transferred to a hospital depending
on their health status.

Model simulations and analysis will be completed using MATLAB. Students with knowledge of calculus
and the interpretation of derivatives can succeed in this project even without explicit study of differential
equations. Programming experience is a bonus but is not required for successful completion of this project.

2 Agent-Based Models to Evaluate Precision Nutrition
Interventions through a Socioeconomic Lens

An individual’s overall health is dependent upon many characteristics including age, demographics, physical
activity, body-mass index (BMI), underlying health conditions, and socioeconomic status. To date, many
guidelines to promote healthier eating have been aimed at the total population instead of at an individual
level. By only considering the broader group, individuals’ characteristics are often overlooked, and the
precision in health guidelines is limited. More often than not, healthy eating guidelines have been based
on large clinical studies that do not account for diverse individual nutrition needs and responses to diet
[8, 34]. Additionally, it is widely known that there are large disparities in the quality of food environments
for historically marginalized groups [19, 24, 52], but there is still much to learn about the extent to which
healthy food prices and preferences can be linked to economic segregation [1]. Auchincloss et al. [1] showed
that residential segregation, relative pricing of healthy foods, and dietary preferences have an impact on diet
differential, and that if healthy foods were more favorably priced and encouraged, they may become better
integrated into low-income areas. They also emphasize that income inequalities in diet are maintained by
complex interrelated processes that are not fully understood and still need to be more completely studied.

Given the many complex, interrelated processes involved in diet and eating habits, researchers are now
turning to precision nutrition research [28]. Precision nutrition focuses on targeting individual needs and
differences when offering nutritional advice rather than relying on generic diet information [2, 34]. In par-
ticular, precision nutrition takes into account heterogeneity in an individual’s nutrition by considering how
factors such as social networks, environments, and culture impact what people eat.

To provide new insights into the field of precision nutrition, this project will investigate the role of
an individual’s socioeconomic status on both their overall health and the total population health through
agent-based models (ABMs) of two Chicagoland villages: Broadview, IL and Clarendon Hills, IL. We will
recreate the maps of the two neighborhoods, including streets, houses, restaurants, grocery stores, schools,
hospitals, recreation facilities, and transport infrastructure and their occupants, using the software NetLogo
[53]. These two communities are comparable in size but have very different racial breakdowns, socioeconomic
statuses, and access to resources. The modeled demographic breakdowns will reflect reality, and individuals
in the model will each have personal characteristics including age, sex, race and ethnicity, income, BMI, and
medical information/disease status. Other features to be incorporated will include food budget parameters,
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educational attainment, physical activity levels, and sleep tracking in order to incorporate decision making
and daily behaviors and determine an overall health score for each agent. These individuals will interact
with each other and their surroundings in their neighborhoods, such as grocery stores and restaurants (or
lack thereof).

With the development of a model replicating real-world interactions and emphasizing the distinction
between an individual’s health and relation to quality food, we can examine how an individual’s social
network and resources affect their overall health score and examine impacts of socioeconomic variability on
an individual’s overall health. Our proposed ABMs will track individual characteristics, decision making,
and daily behaviors in order to determine an overall health score for each agent. By modeling the interactions
of an individual with both others and their surroundings, such as grocery stores and restaurants, we can
identify how an individual’s social network and resources affect their overall health score. Specifically, our
work aims to answer the following questions:

1. How does the efficacy of the simulated interventions vary across different types of communities?

2. Do the simulated interventions reinforce or reduce pre-existing social disparities?

In answering these questions, the focus of our work is to identify effective interventions for improving public
health through the use of individualized information. Additionally, targeted interventions to improve popu-
lation health in villages with varying socioeconomic statuses can be assessed to reduce health disparities.

ABMs are based on computer simulations where the architect defines a set of rules governing how indi-
viduals interact with one another on a given spatial grid. Using an ABM allows for a variety of simulations
and tracking at the agent (individual) level, which allows one to determine the impact of individual behaviors
on the emerging dynamics of a population as a whole. Instead of offering generic advice, such as “eat a diet
rich in fruits and vegetables,” an ABM can include biological variability between individuals in response to
nutrition and can also test targeted methods to tailor specific strategies for individuals or specific subgroups
of communities. Moreover, with an ABM, we can identify interventions to increase the overall population
health of the individuals in the communities. We have four main aims:

1. Create virtual communities patterned after the two Chicagoland villages with agents approximating
the demographics of the populations inhabiting the two villages,

2. Examine the social, nutritional, and health networks and behaviors exhibited by the agents of each
virtual community within and between neighborhoods and communities,

3. Classify which factors most notably influence health food availability and income differences in healthy
eating, and

4. Determine which simulated interventions are most effective in the two environments in order to improve
population health.

The more we understand about the factors and systems that impact individual decisions and behaviors, the
more efficacious precision nutrition becomes.

We will begin by coding the two communities in question. There will be two separate models – one for
each village. NetLogo works on a grid where each patch on the grid can be labeled to represent its type.
The maps of these communities will be gridded and translated into the NetLogo Graphical User Interface
(GUI), including streets, houses, restaurants, grocery stores, schools, hospitals, recreation facilities, and
transport infrastructure. This will be important when we begin to incorporate submodels as the location
of an individual’s house and work will impact their access to particular grocery stores and restaurants.
Stores and restaurants will be classified as healthy or unhealthy and expensive or inexpensive based on their
real-world counterparts.

After developing the foundation of the ABMs, we will incorporate agents with individualized character-
istics and randomly assign their locations for home and work/school. This will make it possible to identify
an individual’s access to food and beverage sources (supermarkets, convenience stores, sit-down restaurants,
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and fast food/carry outs, or lack thereof) when they are at home and at work. There will also be assignments
such as total household income, household food preferences, and proximity to a grocery store. We will include
the same number of agents as the population for the two communities and will develop agents with these
characteristics in both models to ensure that the agents are reflective of the true population. We will also
model individuals that work outside the neighborhood where they reside. We will use data from the 2020
Census, U.S. Bureau of Labor Statistics, National Health and Nutrition Examination Survey (NHANES),
Healthy Eating Index from National Health and Nutrition Examination Survey, and Reference USA to ensure
that the breakdown of individuals and spatial grid accurately reflect the modeled neighborhoods. Together,
these features will be used to calculate an individual health score, a continuous value between 0 (unhealthy)
and 1 (healthy) that will be updated daily.

The base unit of the total health of the community is the individual’s health score. Each individual’s
features will be combined with daily choices related to eating and exercise to arrive at a health score indicative
of an individual’s total health. Since the individual’s diet is important in this health score, an individual’s
access to nutritious foods will also be indirectly incorporated. The agents’ daily mobility, daily routines, and
individual preferences necessarily affect the type of food that they eat. Individual health scores will be used
to arrive at a global measure of community health. To assess the health of the community, we will use two
calculations:

1. the sum of all of the agents’ individual health scores, which we refer to as the population health, and

2. the median health score of all individuals in the community.

By running simulations on a daily time-step, each agent will have the opportunity to consume meals either
at home or work/school or dine out as well as engage in physical activity. These choices will be made
according to probabilities about the price, type of food, and remaining weekly food budget and will be
inversely proportional to the location’s geographic distance.

Every ABM consists of submodels that dictate the movement between agents. To replicate interactions
within the community, we will code procedures that dictate how an individual operates daily, such as their
food choices and physical activity habits. Moreover, these submodels determine the probability of individuals
shopping at a particular grocery store or dining at a restaurant, based on an individual’s income level. We
anticipate that many of these submodels could be used in both community ABMs. Conversely, certain
submodels will be community-specific, especially when incorporating probabilities. More than including the
movement of individuals, it will be important to develop submodels for each individual such as meal timing
and content, which will update the individual’s energy level and overall health score.

After building the two community models, we will use the models to compare various health and economic
interventions that increase both the overall population health and median health score. Some intervention
strategies to consider will include changing consumer behavior by providing support for making healthier
food choices; developing a healthy grocery store or restaurant in a food swamp, an area saturated with
fast food; increasing individual/household salaries to determine impact on eating habits; and assessing how
combinations of taxes, nutrition warning labels, and advertising affect purchase of certain food groups.
To begin our assessment of interventions, we will first weigh the impact of each strategy implemented
individually. Then, we will consider the interventions in combination to determine those overall strategies
that have the largest impact on increasing the population health score and median individual health score.

Due to the stochasticity embedded in ABMs and to best assess the impact of the control intervention
strategies, we will run 100 iterations over a one-year simulated time period with each combination of pa-
rameter values (representing different control strategies). The model will be run on a one-day time-step
using the BehaviorSpace tool in NetLogo, which allows us to specify the various parameter combinations
we want to simulate and the resulting outputs of interest. Because of the computing power required to run
these simulations, we will utilize parallel processing and high performance computing. Throughout testing
these interventions, we aim to understand whether these strategies reinforce or reduce pre-existing social
disparities and whether optimal strategies remain consistent in both communities.

Students working on this project will be responsible for tasks such as conducting background research
about demographic breakdowns of Broadview, IL and Clarendon Hills, IL; complete coding of patches
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(streets, houses, restaurants, grocery stores, schools, recreation facilities, and transport infrastructure) and
of full environments in NetLogo; developing submodels; determining the health score calculation based on
diet, exercise, and medical conditions; and simulating and testing intervention strategies both individually
and in conjunction using BehaviorSpace. Students do not need programming experience to be successful in
this project, but it is a bonus.

3 Predictive Modeling and Analysis of Sports Using Linear-Algebra-
Based Models

This project involves creating and testing the accuracy of different linear-algebra-based models from sports
data. There are many methods for predicting and ranking sports [3, 6, 7, 10, 11, 16, 23, 25, 27, 29, 30, 46, 51],
and there are many algorithmic rating sites, such as www.mratings.com, www.thepredictiontracker.com,
and www.masseyratings.com, devoted to sports ranking. Among the many mathematically-inspired sports
ranking systems, linear-algebra-based methods are some of the most elegantly simple. A variety of methods
are used, and some are dependent on complex mathematical or statistical tools, but weighted Colley and
Massey models, in addition to PageRank and Markov chain models, are very accessible for undergraduates
who have taken linear algebra. Colley and Massey models essentially involve setting up and solving a system
of equations to solve for a rating vector for each team.

Colley Method

The Colley method was developed by Wesley Colley. Instead of using regular win percentage
wi

ti
to calculate

the quality of a team, where wi is the total number of wins for Team i and ti is the total number of games

played by Team i, Colley applies Laplace’s Rule of Succession to calculate win percentage by
wi + 1

ti + 2
. Note

that with regular win percentage, an untried team has a 0/0 in percentage, but with this adjustment, an
untried team has a win percentage of 50%. Colley also incorporates strength of schedule into his rating
system by approximating the number of games played by the sum of the rating of the teams played [14].

To set up his system, Colley sets the rating for each team, ri, equal to its Colley win percentage. That is,

ri =
wi + 1

ti + 2
. In order to incorporate strength of schedule, Colley does the following algebraic manipulation

to get the following relationship:

(2 + ti)ri = 1 +
wi − li

2
+

wi + li
2

, (1)

where li denotes the total number of losses for Team i. Note that
wi + li

2
is the total number of games played

by team i divided by two. This is where Colley made an adjustment to his system in order to incorporate

strength of schedule. He does this by replacing
wi + li

2
with the sum of the ratings of the teams played by

Team i. Thus, our new Colley system has the following set up for each Team i:

(2 + ti)ri = 1 +
wi − li

2
+ S, (2)

where S is the sum of the ratings of teams played by Team i.
These equations form a nice symmetric matrix system for n teams, Cr = b, where C is an n× n matrix

holding the coefficients of the ri’s in each equation and b is an n× 1 vector containing the constant portions
of each equation. After solving this system, we order the team rankings by the value of the ratings with the
largest rating corresponding with the top ranked team.
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Massey Method

Colley’s method doesn’t incorporate scores into its system. Conversely, Kenneth Massey’s method of sports
rating creates a system of equations which is based on the score of the games played. Massey originally
created this method for ranking college football teams [32, 43]. Using the Massey method, for each game the
difference in the ratings correlates to the point differential [32]. This is represented as a system: ri−rj = bk,
where ri is the rating for team i, rj is the rating for team j, and bk is the score differential for game k.
This method makes it easy to incorporate a cap on the score differential to potentially curb the impact of
blowouts.

Note that each row of our system of equations represents a particular game from the dataset. Our
columns represent the different teams being ranked. We set this system up as Xr = b, where X is a matrix
with m rows (one for each game) and n columns (one for each team), and b is an m × 1 vector with the
point differentials from each game. This usually means in practice that our system has more rows than
columns and is often inconsistent (especially since it is rare for a team to beat another team twice by the
same score). Therefore, the Massey method uses the method of least squares to solve its system [38]. To
find a least squares solution, we solve the normal equation which is created by left multiplying both sides of
our original equation Xr = b by the transpose of X [10]. The transpose matrix, denoted XT , is a matrix
whose rows are the columns of the original matrix X. Thus, we now solve the system XTXr = XTb.

Sometimes there are multiple least squares solutions [10]. To fix this, Massey needed to force his system
to have a unique solution. He did this by replacing one of the rows with an equation which was not in the
span of the other rows of the system (that is, not a linear combination of the other rows). He could replace

any row, but for consistency, Massey replaces the last row of the system with

m∑
i=1

ri = 0 [10, 23]. This

ultimately means that the sum of the ratings should be zero. Like with the Colley method, after we solve
our system of equations, we put the ratings in order from largest to smallest in order to create our ranking
of the teams.

While at their most basic level Colley and Massey methods are useful for sports rankings, they are not
particularly strong at predicting future outcomes of games [3, 10]. One way to improve these methods for
ranking and predicting future outcomes is by introducing weights to these systems [6, 10, 9, 23]. For example,
we can weight a win achieved on the road higher than winning a home game or weight wins at the end of the
season higher than wins at the start of the season. In this research, we usually incorporate multiple weights
and multiple factors and then use cross validation and sensitivity analyses to help us improve our models.

Markov Processes

Markov processes are another popular and accessible model used in sports analytics [7, 25, 27, 29, 30, 46].
This modeling technique is used to create state-based stochastic models that describe the sequences of
possible events where the probability of each event depends solely on the state at which it was previously
in. Similar to the Colley and Massey models, the team with the highest probability is ranked first, the team
with the second highest probability is ranked second, etc. The process of finding a “ranking” of web pages
can be extended to sports ranking by representing teams as “states.” There are a wide range of Markov
models used in sports analytics [16, 25, 29, 30, 47]. Absorbing Markov chains are used to model Major
League Baseball batting and run scoring [16, 47]. Kvam and Sokol developed a Markov model which was
used to rank NCAA basketball teams and can easily be extended to other sports settings [30]. This modeling
technique aims to predict the probability that a team is better than its opponent, given particular features
or statistics (e.g., that the home team won by a certain number of points). We can then create a matrix that
encodes the probability of switching from one state (in this case, “teams”) to another, called a transition
or stochastic matrix. These probabilities can be approximated using past-game data. Once the transition
matrix is created, we can determine the long-term behavior of the system represented by the probability
vector called the steady-state vector. The teams are then ranked based on their steady-state probability
value. This model can be extended in a variety of ways. For example, instead of looking at home versus
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away, we can incorporate statistics such as win streaks, conference versus non-conference wins, and time
during the season.

Proposed Projects

Each linear-algebra-based model has different strengths and weaknesses, and certain models may be better
suited for a particular sport or dataset. Mathematicians have explored and compared these methods in
sports settings [3, 6, 7, 10, 9, 11, 13, 25, 27, 29, 30, 41, 45, 46]. There are a variety of questions that can
be explored using these models, and techniques from this research can translate to broader scenarios that
involve ranking or predictive modeling. Some possible projects for this program include the following:

• Create and compare various linear-algebra-based ranking models on their ability to predict end-of-
season outcomes in team sports such as soccer, hockey, baseball, football, and/or individual sports such
as tennis, track and field, and skating. These models could incorporate features such as win streaks,
conference wins, pressure, rule changes, etc. In particular, rule changes in a sport provide interesting
motivation for these models. For example, since 2006, the National Hockey League implemented new
overtime rules. When a game goes into overtime, each team receives one point in the league standings,
even if they ultimately end up losing the game. Therefore, in addition to incorporating other factors
into a Colley, Massey, or Markov model, students could explore whether or not having more ties or
overtime games is more predictive for the end-of-the-season standings. Students, with the guidance of
the organizers, may choose which sport(s) and features they would like to explore.

• Create and compare various linear-algebra-based ranking models on their ability to predict end-of-
competition rankings or explore bias in judged sports such as gymnastics, diving, skateboarding,
freestyle skiing, figure skating, or equestrian sports. Research has shown that there are known bi-
ases based on gender, competition order, difficulty of routine, the nationality of the judge, and country
of origin of the judge [5, 17, 18, 26, 39, 44]. Creating weighted linear-algebra models could provide
insight into some of these biases or parts of a judged score. Markov chains may also be useful in
analyzing subjectively judged sports. For example, Boen found that some judges are influenced by
other judge scores [5]. Students, with the guidance of the organizers, may choose which sport(s) and
features they would like to explore.

This research involves linear algebra, programming, and some data analytics. Students do not need to
have programming experience or to have explicitly studied linear algebra to be successful in this project, but
it is a bonus.
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