Computational and Analytical Aspects of Image Reconstruction
(July 13-17, 2015)

Application review will begin on March 9, 2015
Organizing Committee


The mathematical study of image reconstruction problems can have a huge impact on human life. More efficient mathematical algorithms for X-ray tomography and more accurate mathematical models in seismic or hybrid imaging can lead to better imaging devices in fields such as medicine and remote sensing. Developing the underlying mathematics, including the analysis of reconstruction stability, regularization, singularity characterization, and efficient algorithms, may lead to fewer false positives in fields such as medical, seismic and radar imaging.

This topical workshop will bring together international experts working in computational and analytical aspects of image reconstruction (including but not limited to electron-microscope tomography, hybrid imaging, radar and sonar, full waveform inversion of seismic imaging and X-ray CT) as well as postdoctoral fellows and graduate students. There will be multiple introductory-level talks for early-career researchers and non-specialists in the area on both the mathematics involved and the scientific and industrial applications. Speakers and participants from industry will be included to strengthen the practical aspects of the workshop.

Output of iterations of a Mumford-Shah level set-based method for simultaneous reconstruction and segmentation of a torso phantom from noisy CT data. Images courtesy of Esther Klann relating to work in E. Klann, R. Ramlau, and W. Ring, Inverse Problems and Imaging, Vol. 5 (2011), 137-166.