Modular Arithmetic

Notes

You can think of arithmetic $\bmod n$ as working on a clock with \qquad . For any numbers a and $n, a \bmod n$ is \qquad .
To find the $\bmod n$ multiplicative inverse, we look for the number a^{-1} between 1 and $n-1$ such that \qquad .
In symbols, the addition property of modular arithmetic is

In symbols, the multiplication property of modular arithmetic is

The above properties mean that when you are doing modular arithmetic you can reduce $\bmod n$ either before or after you perform the operations!

Reducing Modulo n

1. Reduce each of the following.
(a) $13 \bmod 7 \equiv$ \qquad (f) $765 \bmod 2 \equiv$ \qquad
(b) $16 \bmod 4 \equiv$ \qquad (g) $39 \bmod 12 \equiv$ \qquad
(c) $-12 \bmod 9 \equiv$ \qquad
(h) $-8 \bmod 3 \equiv$
(d) $32 \bmod 28 \equiv$ \qquad
(i) $55 \bmod 11 \equiv$ \qquad
2. Circle any of the letters from question 1 where the given number was divisible by the modulus. What do you notice about these problems? Explain why this makes sense.

Modular Arithmetic

1. Compute the following.
(a) $3+6 \bmod 7 \equiv$ \qquad
(b) $3-6 \bmod 7 \equiv$ \qquad
(c) $15+4 \bmod 9 \equiv$ \qquad
(d) $5-22 \bmod 28 \equiv$ \qquad
(e) $12 \cdot 3 \bmod 2 \equiv$ \qquad
(f) $5 \cdot 2 \bmod 12 \equiv$ \qquad
(g) $77 \cdot 75 \bmod 76 \equiv$ \qquad
(h) $2345678 \cdot 8765432 \bmod 2 \equiv$ \qquad
(i) $3+16-21 \bmod 7 \equiv$ \qquad
(j) $5+9+7+6+4+30+13 \bmod 3 \equiv$ \qquad
(k) $5 \cdot(77-301+4567) \bmod 5 \equiv$ \qquad
(I) $7 \cdot 3 \cdot 5 \bmod 10 \equiv$ \qquad
(m) $2^{4} \bmod 3 \equiv$ \qquad
(n) $3^{3} \bmod 25 \equiv$ \qquad
(o) $9^{10} \bmod 8 \equiv$ \qquad
(p) $3^{-1} \bmod 7 \equiv$ \qquad
(q) $7^{-1} \bmod 9 \equiv$ \qquad
(r) $7 \div 4 \bmod 11 \equiv$ \qquad
(s) $8 \div 4 \bmod 15 \equiv$ \qquad
2. Fill in the "Number 1", "Number 2", and "Modulus" blanks below to create your own modular equations. Then fill in the "Answer" blank to complete the equation. If you're doing this with a friend, feel free to make up questions for each other!
(a) \qquad $+$ \qquad $=$ \qquad mod \qquad
(b) \qquad $-$ \qquad \equiv \qquad mod \qquad
(c) \qquad . \qquad \equiv \qquad mod \qquad
3. Show that 6 does not have a multiplicative inverse mod 8 by checking all possibilities.
4. (Challenge problem) Try to come up with a general rule for when a number a does not have a multiplicative inverse $\bmod n$.
