
Integral Equation Methods for Vortex Dominated
Flows, a High-order Conservative Eulerian

Approach

J. Bevan, UIUC

ICERM/HKUST Fast Integral Equation Methods
January 5, 2016



Vorticity and Circulation

ω = ∇× u (1)

Γ =

∮
∂S

u · dl =

∫∫
S
ω · dS (2)

0https://commons.wikimedia.org/wiki/File:Generalcirculation-vorticitydiagram.svg
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Physical Examples and Motivating Problems
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Motivation
I Direct solution of Navier-Stokes impractical for many fluid

problems
I Vorticity-velocity formulation well-suited for inviscid,

incompressible, vortex dominated flows
I Lagrangian vortex methods are common approach1,2, but face

several challenges3

I Initial vortex points become disorganized, re-meshing etc.
required

I Eulerian approach avoids disorganization, extendable to high
order

I Brown et al. successful with Eulerian approach for low order
FVM4 suggests high-order extension possible

1J. Strain. Fast adaptive 2D vortex methods. Journal of computational physics 132.1 (1997): 108-122.
2Moussa, C., Carley, M. J. (2008). A Lagrangian vortex method for unbounded flows. International journal for

numerical methods in fluids, 58(2), 161-181.
3J. Strain. 2D vortex methods and singular quadrature rules. Journal of Computational Physics 124.1 (1996):

131-145.
4R.E. Brown. Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters. AIAA Journal, 2000. Vol.

38(No. 1): p. 57-63.
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Goals of Technique

Goals:
I Development of a high-order solver for inviscid incompressible

vorticity-dominated flows in 2D
I High-order advective solver capable of mixed order flux

handling
I High-order Biot-Savart evaluation routine

Contributions:

I Complete high-order method for velocity-vorticity inviscid flow

I Validation of solver and underlying Eulerian vortex approach

I Evaluation of convergence, error, and performance of method
and solver
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Proposed Method

I Eulerian representation of velocity and vorticity

I Solution of inviscid velocity-vorticity PDE

I Velocity evaluation via eval of integral equation (v.s. sol’n of
PDE)5

I Vorticity advection via a line-DG6 approach

I Method of lines, explicit time-stepping with Runge-Kutta7

5Winckelmans, G. S., and A. Leonard. Contributions to vortex particle methods for the computation of
three-dimensional incompressible unsteady flows. Journal of Computational Physics 109.2 (1993): 247-273.

6P.O. Persson. A Sparse and High-Order Accurate Line-Based Discontinuous Galerkin Method for Unstructured
Meshes. J. Comp. Phys., Vol. 233, pp. 414-429, Jan 2013.

7Niegemann, Jens, Richard Diehl, and Kurt Busch. Efficient low-storage Runge–Kutta schemes with optimized
stability regions. Journal of Computational Physics 231.2 (2012): 364-372.
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Theory: Navier-Stokes: Velocity-vorticity form

Navier-Stokes momentum equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + 1

3 µ∇(∇ · u) (3)

where u is the velocity field, p is the pressure field, and ρ is the
density. Define vorticity as

ω = ∇× u (4)

Navier-Stokes can be recast as

∂ω

∂t
+ u · ∇ω − ω · ∇u = S(x, t) (5)

viscous generation of vorticity, S
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Velocity-vorticity form

Advantages:

I Explicit conservation of vorticity.

I Frequently distribution of the vorticity is sparse.

I No pressure term.

Simplified in 2D, vortex stretching zero. Express in terms of vortex
flux fi(ω) = ui ω

∂ω

∂t
+
∂f

∂xi
= S(x, t) (6)
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Velocity Evaluation

For incompressible flows velocity related to vorticity by

∇2u = −∇× ω (7)

Invert to obtain Biot-Savart integral

u(x∗) =

∫
Ω
K(x∗, x)× ω(x)dx (8)

x∗ is velocity eval point, x is non-zero vorticity domain, K(x∗, x)
singular Biot-Savart kernel8

K(x∗, x) =
−1

2π

x∗ − x
|x∗ − x|2

(9)

8Beale, J. Thomas, and Andrew Majda. High order accurate vortex methods with explicit velocity kernels.
Journal of Computational Physics 58.2 (1985): 188-208.
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Kernel De-singularization: Two Viewpoints

I Lagrangian: Singularity in Biot-Savart kernel generates
non-physical velocities near vortex points, de-singularize by
approximation of Dirac delta function using finite cutoff radius
δ.

I Lagrangian: Heuristically, one deals with vortex “blobs”.

I Eulerian: Vorticity is not confined to points, but spatially
varying; what purpose does de-singularization serve? Strictly
practical.

I Eulerian: While Biot-Savart kernel converges analytically, no
guarantees numerically. Quadrature assumes polynomial basis
appropriate approximation.

I Eulerian: De-singularization means to an end, improve
quadrature convergence qualities.
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Convergence of Biot-Savart Integral

I Nearly singular nature of Biot-Savart kernel difficult to
integrate numerically

I Smaller the cutoff radius, larger quadrature errors

I Larger cutoff radius, larger velocity approximation errors

I Cutoff radius should be selected to balance both
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Discontinuous Galerkin (DG)
- Why DG vs others?
We seek to solve the PDE Eqn. (6). An approximate solution

∼
ω has

residual
∂
∼
ω

∂t
+
∂f

∂xi
= R(x) (10)

1-D case, vorticity sources omitted for simplicity.
DG approach9: minimize the L2 norm by orthogonal projection of
residual onto approximating space. Complete basis made from test
functions φj , so: ∫

Ω
R(x)φj dx = 0 for all j (11)

Substituting residual with conservation PDE yields:∫
Ω

∂
∼
ω

∂t
φj dx+

∫
Ω

∂f(
∼
ω)

∂x
φj dx = 0 for all j (12)

9W.H Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. 1973.
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Discontinuous Galerkin (DG)(cont.)

Use same space for both test functions and and approximation, so
Mth order vorticity approximation is

ω(x, t) ≈ ∼ω(x, t) =

M∑
i=0

ai(t)ψi(x) (13)

Substitute into Eqn. (12) and integrate by parts second term:

M∑
i=0

[
dai(t)

dt

∫ xR

xL

ψi(x)φj(x) dx

]
+fφj(x)

∣∣∣xR
xL
−
∫ xR

xL

f(
∼
ω)

dφj(x)

dx
dx = 0

(14)
Note: Local solution to PDE on an element.

12 / 39



Discontinuous Galerkin (DG)(cont.)

All local solutions decoupled, also vorticity multiply defined at
overlapping element boundaries. Recover global solution and treat
element boundaries via an upwind flux function10(similar to finite
volume method)

f̂upwind(x
+, x−) = u{{∼ω}}+

|u|
2

[[
∼
ω]] (15)

where {{ω+}} = ω++ω−

2 and [[ω]] = ω+ − ω−

Applying change of variables to map to arbitrary computational
element X ∈ [−1, 1] results in:

∆x

2

M∑
i=0

[
dai
dt

∫ 1

−1
ψi φj dX

]
+ f̂φj

∣∣∣xR
xL
−
∫ 1

−1
f(
∼
ω)

dφj
dX

dX = 0

(16)
10Hesthaven, Jan S., and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and

applications. Vol. 54. Springer Science & Business Media, 2007.

13 / 39



Solver Overview
D e f i n e problem p a r a m e t e r s
D e f i n e s o l v e r p a r a m e t e r s
C a l c u l a t e d e r i v e d s o l v e r p a r a m e t e r s
Setup i n t i t i a l c o n d i t i o n s
I n i t i a l i z e s o l v e r
%Time s t e pp i n g
f o r t=0 to end

i f d a t a l o g ?=y e s
save system s t a t e to f i l e and p l o t

end
%Loop through RK s t a g e s
f o r s=1 to l a s t s t a g e

%For e l ement s above t h r e s h o l d
f o r each v o r t i c i t y s o u r c e

c a l c u l a t e v e l o c i t y c o n t r i b u t i o n s
end
%Ca l c u l a t e semi−d i s c r e t e system terms
i n t e r p o l a t e b o u n d a r y v o r t i c i t y
c a l c u l a t e n u m e r i c a l f l u x e s
c a l c u l a t e t o t a l s u r f a c e f l u x
c a l c u l a t e i n t e r n a l s t i f f n e s s f l u x

v o r t i c i t y r a t e o f c h a n g e = . . .
i n t e r n a l s t i f f n e s s f l u x − t o t a l s u r f a c e f l u x

RK stage= ( R K c o e f f a∗RK stage ) + . . .
( t i m e s t e p ∗ v o r t i c i t y r a t e o f c h a n g e )

v o r t i c i t y= v o r t i c i t y + R K c o e f f b ∗ RK stage
end

end
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Methodology: Method Specific Choices
I Choose basis functions to be the interpolating Lagrange

polynomials

ψi(x) = `i(x) =
M∏
p=0
p 6=i

x− xp
xi − xp

(17)

I Choose vorticity interpolation nodes to be the Gauss-Legendre
points, collocate with quadrature points, results in
simplification of mass matrix∫

`i(x)`j(x)dx = δijwj (18)

I Take line-DG6 approach, form 2D basis as tensor product of
1D bases

f(x, y) ≈

 L∑
j=0

zj`j(y)

×[ M∑
i=0

zi`i(x)

]
=

M∑
j=0

M∑
i=0

zij`j`i =

M∑
j=0

zij`j

M∑
i=0

`i

(19)
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Method Specific Choices(cont.)
I The PDE is now solved along each tensor direction

∆x

2

M∑
i=0

[
dzij
dt

∫ 1

−1
`i `j dX

]
+ f̂ `j

∣∣∣xR
xL
−
∫ 1

−1
f(
∼
ω) `′j dX = 0

(20)
I The rate of change at each node is the sum of the

contribution along each tensor direction

∂ωij
∂t

= (
∂ωij
∂t

)x−line + (
∂ωij
∂t

)y−line (21)
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Velocity Evaluation

I Calculate velocity at all velocity nodes by summation of
contribution from all vorticity using de-singularized kernel and
Gauss-Legendre quadrature

u(x∗) =

Nmask∑
E=1

[ωpre]
TKδ(x

∗ − [xE ]) (22)

ωpre = [ω(xE)]. ∗ [wi ⊗ wj ] (23)

I Pre-multiplication of particular elemental vorticity source by
outer product of Gauss-Legendre quadrature weights and
computing as vector-vector product saves great deal of
computational effort.

I Kernel values pre-calculated for “generalized” reference frame
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Explicit Time-Stepping

I Method of lines approach to semi-discrete system

I Low-storage explicit Runge-Kutta method used

I 14 stage-4th order “NRK14C” used to maximize stable
time-step7

I Stability region almost 1.9 times larger per stage along
negative real axis, chief consideration for dissipative upwind
DG schemes
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Results: Validating Test Cases

I Perlman: Stationary vortex11

ω(z) = (1− |z|2)7, |z| ≤ 1 ω(z) = 0, |z| > 1 z2 = x2 + y2

(24)

I Has analytical solution to vorticity and velocity fields

u(z, t) = f(|z|)
(
y

−x

)
(25)

where

f(|z|) =

{
− 1

16|z|2 (1− (1− |z|2)8) |z| ≤ 1

− 1
16|z|2 |z| > 1

11M. Perlman. On the accuracy of vortex methods, J. Comput. Phys. 59 (1985) 200–223.

19 / 39



Comparison of Cutoff Radius Effects(P)

Figure: Comparison of convergence effects on vorticity by cutoff radius
for δ/∆x=0.1(..), 0.2(- -), 0.3(-), 0.5(-.), 0.9(-o).
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Comparison of Cutoff Radius Effects(P)(cont.)

Figure: Comparison of convergence effects on velocity by cutoff radius for
δ/∆x=0.1(..), 0.2(- -), 0.3(-), 0.5(-.), 0.9(-o).
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Observed Convergence Rate of Various Orders(P)

Figure: Comparison of convergence rate for various order methods:
3rd(-.), 4th(..), 5th(- -), and 6th(-).
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Validating Test Cases

I Strain: Interacting vortex patches12

ω(x, y, 0) =

m∑
j=1

Ωjexp(−((x− xj)2 + (y − yj)2)/ρ2
j ) (26)

Table: Interacting Vortex Patch Parameters

j xj yj ρj Ωj

1 -0.6988 -1.7756 0.6768 -0.4515
2 1.4363 -1.4566 0.3294 0.4968
3 -0.1722 0.4175 0.5807 -0.9643
4 -1.5009 -0.0937 0.2504 0.3418

12J. Strain. 2D vortex methods and singular quadrature rules. Journal of Computational Physics 124.1 (1996):
131-145.
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Strain Test Case, t=0

Figure: Starting configuration for Strain test case.
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Approximated Convergence Rate(S)

Figure: Dependency of rate of convergence on order of method, for a 4th
order(- -) and 6th order(-) method.
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Approximated Convergence Rate(S)(cont.)

Figure: Dependency of rate of convergence on cutoff radius in sixth order
method, for a δ/∆x= 0.5(- -) and 0.25(-).
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Qualitative Comparison w/ Previous Work12

Figure: Comparison of Strain’s results with present method t=28. Left to
right, top to bottom, DOF= 6400, 12800, 25600; 3136, 7056, 63504.
Reprinted with permission from Elsevier.
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Validating Test Cases

I Koumoutsakos: Elliptical vortex13

ωII(x, y, 0)mod = 20(1−((x/a)2+(y/b)2)2/0.84) a = 1, b = 2
(27)

13P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex, J. Comput. Phys. 138 (1997) 821–857.

28 / 39



Qualitative Comparison of Vorticity(K)

Figure: Comparison of vorticity, Koumoutsakos (top) and present method
(bottom). From left to right, top to bottom t=1, 2, 4; 0.80, 1.93, 2.32.
Reprinted with permission from Elsevier.
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Qualitative Comparison of Vorticity(K)(cont.)

Figure: Comparison of vorticity, Koumoutsakos (top) and present method
(bottom). From left to right top to bottom,: t=6, 12, 18; 5.94, 11.99,
17.94. Reprinted with permission from Elsevier.
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Qualitative Comparison of Vorticity(K)(cont.)

Figure: Comparison of vorticity, Koumoutsakos (left) and present method
(right). From left to right: t=24; 23.98. Reprinted with permission from
Elsevier.
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Comparison of Aspect Ratio(K)

Figure: Comparison of effective aspect ratio, Koumoutsakos (top) and
present method (bottom). Reprinted with permission from Elsevier.
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Discussion: Validation

I Analytical: With proper choice of kernel, cutoff radius,
stage-wise velocity evaluation, and matching velocity order
method able to obtain solution within discretization error of
exact solution for velocity and vorticity.

I Qualitative: Excellent agreement in Strain test case even for
test with far fewer DOFs

I Good agreement in Koumoutsakos test case, with some minor
deviation towards end of period studied and minor artifacting
at vortex body boundaries.

I DOFs required about equal to Koumoutsakos’s results, despite
being higher-order method.

I Arm filaments and vortex body boundary challenging for
polynomial basis functions, discontinuous derivatives affect
bound on interpolation error.
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Convergence Rate

I In Perlman test case, capable of near optimal convergence
rates for stationary vortex test case.

I Half-order less convergence rate for higher order methods due
to lack of as many vorticity derivatives.

I Non-optimal approximated convergence observed in Strain
test case.

I Choice of two options, cutoff radius too small and gradual
decay of convergence to first order from optimal. Cutoff radius
too large, constant but non-optimal order of convergence.

I Tempting to blame smallest feature size or challenging
evolution evolution for convergence, but testing with pairs of
Perlman vortices shows same issues.
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Exact Biot-Savart Integration
I Ideally: More accurately integrate B-S kernel, w/o extra error

from de-singularization approximation.
I Example: Calculate velocity component at particular point:

uy(Tx) =

∫ ∫
x− Tx
2πr2

ω(x)dx (28)

I ω is actually Lagrange interpolation of vorticity (with interp.
values zij), so substitute:

uy(Tx) =
1

2π

∑
i

∑
j

zij

∫ ∫
x− Tx
r2

`i(x)`j(y) dx dy (29)

I Note: Variable part of interp. occurs outside integral. We can
pre-calculate integrals for all combinations and store.

I Yields modified quadrature:

u(T−) =
1

2π

∑
i

∑
j

zijW(−,Tx,Ty ,i,j) (30)
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Exact B-S Integr.: Modified Kernel Values

I How do these weights vary spatially wrt target point? Divide
special weights by tensor product of standard Gauss-Legendre:

ux =
1

2π

∑
i

∑
j

zij
W(i,j)

WGL
WGL (31)

I Note: Can break into two parts; ω interpolation (zij) and B-S
kernel values. Heuristically:

ux =
1

2π

∑
i

∑
j

zij
∼
kijWGL (32)

I We have recovered something that looks like “modified”
kernel values. How do they vary spatially?
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Exact B-S Integr.: Modified Kernel Values(cont.)
I Modifications to standard kernel values are local;

neighboring/adjacent elements. Promising for FMM
acceleration.

Figure: Number of digits in common between modified and original
kernel(left), original kernel values(right); 5th order nodal set.
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Exact B-S Integr.: Modified Kernel Values(cont.)
I Apply modified scheme to same Strain test case previously

studied, but now with exact kernel integration.

Figure: Dramatically improved convergence order with exact kernel
integration scheme, same parameters as previous Stain test case plots.
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Modified Kernel Scheme Drawbacks, and Future Directions

I Drawback: Calculation/storage of modified kernel values for
unstructured meshes non-trivial

I Drawback: Curse of dimensionality causes explosion of
number of modified kernel values necessary for even moderate
orders for 3-D problems.

I Alternate approach: Use QBX for evaluation of singular
Biot-Savart integral.

I Requires: Volume QBX evaluation. What is the proper choice
of kernel where expansion ”center” can be both ”close” to the
target point, but sufficiently smoother to achieve high-order
scheme.

I Requires: Fast algorithm version for unstructured meshes
needs FMM capable of dealing with interplay between mesh
elements (and associated discretizations) and the (potentially
adaptive) FMM tree.
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