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1. Introduction

Step bunching phenomenon

Figure: Stepped epitaxial surfaces.

Left: from the Internet; Right: [Xu and Xiang, SIAM J. Appl. Math., ’09].
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Step bunching phenomenon (cont.)

Figure: Left: uniform step train; right: step-bunching phenomenon.

Left: [L., Xiang, and Yip, Multiscale Model. Simul., ’16];
Right: [Tersoff et al, Phys. Rev. Lett., ’95].
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Elasticity effects

force monopole, by misfit stress in the bulk
(attractive, destabilizing the uniform step train)

force dipole, by steps
(repulsive, stabilizing the uniform step train)

Figure: Elasticity effects in epitaxial growth. [L., Xiang, and Yip, Multiscale
Model. Simul., ’16]

Tao Luo (HKUST) Step Bunching in Epitaxial Growth 05 Jan 2017 5 / 27



Figure: An example of step configuration. [L., Xiang and Yip, Multiscale Model.
Simul., ’16]
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Tersoff’s Discrete model [Tersoff et al, Phys. Rev. Lett., ’95]
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a: lattice constant, F : adatom flux, ln = xn+1 − xn: step length.

physical constants: ρ0 equilibrium adatom density on a step in the absence of elastic
interactions, D diffusion constant on the terrace, kB Boltzmann constant, T temperature.

−
∑
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due to the misfit stress (attractive)∑

m 6=n
α2

(xm−xn)3 due to the interaction between the steps (repulsive)
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Xiang’s continuum model [SIAM J. Appl. Math., ’02]
Assume h ∈ C4(R) and h is monotonically increasing. Let xn = x(hn, t), hn+1 − hn = a. Taking
continuum limit a→ 0, they obatin the continuum equation

ht = a3F +
a5F

12

∂2

∂x2

(
1

h2
x

)
+

a2πα1ρ0D

kBT

∂2

∂x2

[
−H(hx )− η

(
1

hx
+ γhx

)
hxx

]
. (3)

η = a
2π

, a is the lattice constant, η � 1. Other constants are O(1).

Hilbert transform H(f )(x) = 1
π
p.v .

∫ +∞
−∞

f (y)
x−y

dy .

Remarks:
1. [Xiang, SIAM J. Appl. Math., ’02] and [Xiang & E Phys. Rev. B, ’04] also derived a
continuum model from the discrete model by [Duport et al., Phys. Rev. Lett., ’95], including
Schwoebel effect and interaction between adatoms and steps.
2. [Dal Maso et al, Arch. Rat. Mech. Anal., ’14] and [Fonseca et al, Commun. Partial Differ.
Equ., ’15] established the well-posedness for Xiang’s model.
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Linear stability analysis (at the uniform step train)

discrete: by [Tersoff et al., Phys. Rev. Lett., ’95]
continuum: by [Xiang & E, Phys. Rev. B, ’04]

Numerical simulation

both recover the step bunching phenomenon
consistent to each other

The instability analysis only works for the profile very close to a uniform
step train. However, the bunching happens after the initial stage.
(Compare this with the Cahn–Hilliard theory: initially spinodal
decomposition and then coarsening).

Figure: Continuum model for step-bunching. [Xiang and E, Phys. Rev. B, ’04]
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2. Energy scaling and asymptotic properties

Question: can we rigorously prove that the step bunching will eventually
take place?
Q & A

Q: Is there a solution for the minimization and dynamical problems?
A: Existence of minimizer & gradient structure of the dynamics.

Q: What is the energy of the minimizer?
A: Energy scaling law.

Q: Does the minimizer have only one step bunch?
A: All steps concentrate in a narrow band.

Q: What is the structure of this bunch?
A: Size of the bunch & slope of the bunch profile.
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For a finite system, consider the energy minimization problem: to find
XN = (x1, · · · , xN)T such that

E [XN ] = inf
x ′1<x ′2<···<x ′N

E [X ′N ], (4)

where

E [XN ] =
∑

1≤i<j≤N
e(xj − xi ), (5)

e(x) = α1 log |x |+ α2
2 x−2. (6)

Remark: our results hold for an infinite system in the periodic setting.
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Theorem (existence)

(1)There exists a (global) minimizer of E for each N.
(2)For any initial data, the ODE system has a solution on [0,+∞), i.e., no
finite time blow up.

Indeed, there is a metric g , s.t. dE
dt = −〈dxdt ,

dx
dt 〉g .

Tao Luo (HKUST) Step Bunching in Epitaxial Growth 05 Jan 2017 12 / 27



Theorem (energy scaling law)

For any δ > 0, there exist positive constants cδ and C such that

(α1
4 − δ)N2 logN − cδN

2 ≤ EN ≤ α1
4 N2 logN + CN2 for all N, (7)

where

EN := E [XN ] = inf
x ′1<x ′2<···<x ′N

E [X ′N ] (8)

and XN = (x1, · · · , xN)T is an energy minimizer.
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Theorem (terrace lengths)

For any δ > 0, there exist positive constants cδ, Cδ and C such that, for
all N and for any energy minimizer XN , we have

(minimal terrace length) cδN
− 1

2
−δ ≤ λN ≤ CδN

− 1
2

+δ, (9)

(maximal terrace length) cδN
− 1

6
−δ ≤ λ′N ≤ C , (10)

where

λN := min
1≤i≤N−1

{xi+1 − xi}, (11)

λ′N := max
1≤i≤N−1

{xi+1 − xi}. (12)

Tao Luo (HKUST) Step Bunching in Epitaxial Growth 05 Jan 2017 14 / 27



Theorem (bunch size)

For any δ > 0 and any 0 < s < 1, there exist positive constants C and Cδ,s
such that, for all N and for any energy minimizer XN , we have

(lower bound) wN := xN − x1 ≥ CN
1
2 (logN)−

1
2 , (13)

(upper bound) min
i

{
xi+[sN] − xi

}
≤ Cδ,sN

1
2

+δ. (14)
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Since δ can be arbitrarily small in these theorems, we essentially obtain the
relations as N →∞:

(minimum energy) EN ∼ N2 logN, (15)

(minimal terrace length) λN ∼ N−
1
2 , (16)

(bunch size) wN ∼ N
1
2 , (17)

Recall that the size of the reference state (uniform step train) is

L = Nl ∼ N. (18)
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3. Generalizations

Lennard–Jones (m, n) potential with interaction range index γ

E [XN ] =
∑

1≤i<j≤N, j−i≤Nγ
e(xj − xi ) (19)

e(x) =


−α1

m |x |
−m + α2

n |x |
−n ,−1 < m < n,m 6= 0, n 6= 0,

α1 log |x |+ α2
n |x |

−n , 0 = m < n,
−α1

m |x |
−m − α2 log |x | ,−1 < m < n = 0.

(20)

Notice that:
In epitaxial growth model, LJ (0, 2), ‘step-bunching’ appears.
However, in the classical LJ (6, 12), ‘bunching’ phenomenon is never
mentioned.
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Figure: Phase Diagram of the Scaling Law. This diagram characterizes the scaling
behaviors of Lennard-Jones (m, n) potential with γ = 1.

Case C: −1 < m < 1 < n, ‘bunching’ regime. (lim supN→+∞
wN
N = 0)

Case E: 1 < m < n, ‘non-bunching’ regime. (lim infN→+∞
wN
N > 0)
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Theorem (bunching regime)

Suppose that −1 < m < 1, 1 < n, and 0 < γ ≤ 1. There exist positive
constants C , C ′, θ, and N0 such that, for any N > N0 and any energy
minimizer XN , we have
(A) energy scaling law

CN
1+

(1−m)nγ
n−m ≤ EN ≤ C ′N

1+
(1−m)nγ

n−m , −1 < m < 0, (21)

−CN
1+

(1−m)nγ
n−m ≤ EN ≤ −C ′N

1+
(1−m)nγ

n−m , 0 < m < 1, (22)

n−1
2n

N2 log N − CN2 log log N ≤ EN ≤
n−1

2n
N2 log N + C ′N2, m = 0, γ = 1, (23)

(n−1)γ
n

N1+γ log N − CN1+γ log log N ≤ EN ≤
(n−1)γ

n
N1+γ log N + C ′N1+γ , m = 0, 0 < γ < 1; (24)
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Theorem (bunching regime)

(B) minimal terrace length

CN−
(1−m)γ
n−m ≤ λN ≤ C ′N−

(1−m)γ
n−m , −1 < m < 1,m 6= 0, (25)

CN−
γ
n (logN)−

1
n ≤ λN ≤ C ′N−

γ
n , m = 0; (26)

(C) system size

CN1− (1−m)γ
n−m ≤ wN ≤ C ′N1−θ, −1 < m < 1,m 6= 0, (27)

CN1− γ
n (logN)−

1
n ≤ wN ≤ C ′N1−θ, m = 0. (28)

In particular, we have λN � 1, and the system is in the bunching regime

lim supN→+∞
wN
N = 0.

Remark that C and C ′ may be different in part (A), (B), and (C).
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Theorem (non-bunching regime)

Suppose that either (i) 1 < m < n, 0 ≤ γ ≤ 1 or (ii) −1 < m < 1 < n,
γ = 0. There exist positive constants C , C ′, and N0 such that, for any
N > N0 and any energy minimizer XN , we have
(A) energy scaling law

−CN ≤ EN ≤ −C ′N; (29)

(B) minimal terrace length

C ≤ λN ≤ C ′; (30)

(C) system size

CN ≤ wN ≤ C ′N. (31)

In particular, we have λN = O(1), and the system is in the non-bunching
regime,

lim infN→+∞
wN
N > 0.
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To sum up, we have shown the asymptotic behaviors for two different
regimes:

bunching regime −1 < m < 1 < n, 0 < γ ≤ 1, (32)

λN � 1, lim supN→+∞
wN
N = 0; (33)

non-bunching regime γ = 0 or 1 < m < n, 0 < γ ≤ 1, (34)

λN = O(1), lim infN→+∞
wN
N > 0. (35)
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Continuum model

ht =
∂2

∂x2

[
−H(hx)− η

(
1

hx
+ γhx

)
hxx

]
(36)

where Hilbert transform H(f )(x) = 1
πp.v .

∫ +∞
−∞

f (y)
x−y dy .

In the periodic case, the energy

E c [h] =

∫ L/2

−L/2

(
−πα1

2
h̃H(h̃x) + πα1ηhx log hx + πα1

ηγ

6
h3
x

)
dx , (37)

where h̃ = h − Ax . A is the average slope.
Fix L and let ε = η → 0.
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Existence. WLOG h(0) = 0.

Slope hx is symmetric and unimodal:

hx(ξ) ≤ hx(ξ′), −L/2 < ξ < ξ′ < 0; (38)

hx(ξ) ≥ hx(ξ′), 0 < ξ < ξ′ < L/2. (39)

Large slope parts concentrate in a narrow band

H − εβ < h(εα)− h(−εα) < H. (40)

Step bunch size determined by matched asymptotics: size ∼ η1/2.

These results are consistent with the discrete ones.
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4. Conclusion

For Tersoff’s discrete model, we have

Existence

Energy scaling law

One bunch structure

Optimal bunch size and slope

For Xiang’s continuum model, we have

Existence

One bunch structure

Optimal bunch size and slope

For one-dimensional system with LJ (m, n) interaction, we have

A phase diagram

‘Bunching’ depends on interaction range Nγ

Energy and length scaling laws in bunching/non-bunching regime
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Future work

Dynamics (e.g. coarsening rate, different time stages)

2+1 dimensional model
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Thank you for your attention!
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