Step Bunching in Epitaxial Growth with Elasticity Effects

Tao Luo

Department of Mathematics The Hong Kong University of Science and Technology

joint work with Yang Xiang, Aaron Yip

05 Jan 2017

2 Energy scaling and asymptotic properties

1. Introduction

Step bunching phenomenon

Figure: Stepped epitaxial surfaces.

Left: from the Internet; Right: [Xu and Xiang, SIAM J. Appl. Math., '09].

Step bunching phenomenon (cont.)

Figure: Left: uniform step train; right: step-bunching phenomenon.

Left: [L., Xiang, and Yip, Multiscale Model. Simul., '16]; Right: [Tersoff et al, Phys. Rev. Lett., '95]. Elasticity effects

- force monopole, by misfit stress in the bulk (attractive, destabilizing the uniform step train)
- force dipole, by steps

(repulsive, stabilizing the uniform step train)

Figure: Elasticity effects in epitaxial growth. [L., Xiang, and Yip, Multiscale Model. Simul., '16]

Figure: An example of step configuration. [L., Xiang and Yip, Multiscale Model. Simul., '16]

Tersoff's Discrete model [Tersoff et al, Phys. Rev. Lett., '95]

$$\frac{1}{a^2} \frac{\mathrm{d}x_n}{\mathrm{d}t} = F \frac{l_n + l_{n+1}}{2} + \frac{\rho_0 D}{k_B T} \left(\frac{f_{n+1} - f_n}{l_n} - \frac{f_n - f_{n-1}}{l_{n-1}} \right)$$
(1)

where

$$f_n = -\sum_{m \neq n} \left(\frac{\alpha_1}{x_m - x_n} - \frac{\alpha_2}{(x_m - x_n)^3} \right)$$
(2)

- a: lattice constant, F: adatom flux, $I_n = x_{n+1} x_n$: step length.
- physical constants:
 *p*₀ equilibrium adatom density on a step in the absence of elastic interactions, *D* diffusion constant on the terrace,
 *k*_B Boltzmann constant, *T* temperature.
- $-\sum_{m \neq n} \frac{\alpha_1}{x_m x_n}$ due to the misfit stress (attractive)
- $\sum_{m \neq n} \frac{\alpha_2}{(x_m x_n)^3}$ due to the interaction between the steps (repulsive)

Xiang's continuum model [SIAM J. Appl. Math., '02] Assume $h \in C^4(\mathbb{R})$ and h is monotonically increasing. Let $x_n = x(h_n, t)$, $h_{n+1} - h_n = a$. Taking continuum limit $a \to 0$, they obtain the continuum equation

$$h_{t} = a^{3}F + \frac{a^{5}F}{12}\frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{h_{x}^{2}}\right) + \frac{a^{2}\pi\alpha_{1}\rho_{0}D}{k_{B}T}\frac{\partial^{2}}{\partial x^{2}}\left[-H(h_{x}) - \eta\left(\frac{1}{h_{x}} + \gamma h_{x}\right)h_{xx}\right].$$
 (3)

• $\eta = \frac{a}{2\pi}$, a is the lattice constant, $\eta \ll 1$. Other constants are O(1).

• Hilbert transform
$$H(f)(x) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(y)}{x-y} dy.$$

Remarks:

1. [Xiang, SIAM J. Appl. Math., '02] and [Xiang & E Phys. Rev. B, '04] also derived a continuum model from the discrete model by [Duport et al., Phys. Rev. Lett., '95], including Schwoebel effect and interaction between adatoms and steps.

2. [Dal Maso et al, Arch. Rat. Mech. Anal., '14] and [Fonseca et al, Commun. Partial Differ. Equ., '15] established the well-posedness for Xiang's model.

Tao Luo (HKUST)

Step Bunching in Epitaxial Growth

Linear stability analysis (at the uniform step train)

- discrete: by [Tersoff et al., Phys. Rev. Lett., '95]
- continuum: by [Xiang & E, Phys. Rev. B, '04]

Numerical simulation

- both recover the step bunching phenomenon
- consistent to each other

The instability analysis only works for the profile very close to a uniform step train. However, the bunching happens after the initial stage. (Compare this with the Cahn–Hilliard theory: initially spinodal decomposition and then coarsening).

Figure: Continuum model for step-bunching. [Xiang and E_{\oplus} Phys., Rev., B, 204 $_{\odot}$ $_{\odot}$

Tao Luo (HKUST)

Question: can we rigorously prove that the step bunching will eventually take place?

- Q & A
 - Q: Is there a solution for the minimization and dynamical problems? A: Existence of minimizer & gradient structure of the dynamics.
 - Q: What is the energy of the minimizer? A: Energy scaling law.
 - Q: Does the minimizer have only one step bunch? A: All steps concentrate in a narrow band.
 - Q: What is the structure of this bunch?A: Size of the bunch & slope of the bunch profile.

For a finite system, consider the energy minimization problem: to find $X_N = (x_1, \cdots, x_N)^T$ such that

$$E[X_N] = \inf_{x_1' < x_2' < \dots < x_N'} E[X_N'], \tag{4}$$

where

$$E[X_N] = \sum_{1 \le i < j \le N} e(x_j - x_i),$$
(5)
$$e(x) = \alpha_1 \log |x| + \frac{\alpha_2}{2} x^{-2}.$$
(6)

Remark: our results hold for an infinite system in the periodic setting.

Theorem (existence)

(1)There exists a (global) minimizer of E for each N. (2)For any initial data, the ODE system has a solution on $[0, +\infty)$, i.e., no finite time blow up.

Indeed, there is a metric g, s.t. $\frac{\mathrm{d}E}{\mathrm{d}t} = -\langle \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}x}{\mathrm{d}t} \rangle_g$.

Theorem (energy scaling law)

For any $\delta > 0$, there exist positive constants c_{δ} and C such that

$$\left(\frac{\alpha_1}{4} - \delta\right) N^2 \log N - c_\delta N^2 \le E_N \le \frac{\alpha_1}{4} N^2 \log N + C N^2 \quad \text{for all} \quad N,$$
(7)

where

$$E_N := E[X_N] = \inf_{x_1' < x_2' < \dots < x_N'} E[X_N']$$
(8)

and $X_N = (x_1, \cdots, x_N)^T$ is an energy minimizer.

Theorem (terrace lengths)

For any $\delta > 0$, there exist positive constants c_{δ} , C_{δ} and C such that, for all N and for any energy minimizer X_N , we have

 $\begin{array}{ll} (\textit{minimal terrace length}) & c_{\delta}N^{-\frac{1}{2}-\delta} \leq \lambda_{N} \leq C_{\delta}N^{-\frac{1}{2}+\delta}, \\ (maximal terrace length) & c_{\delta}N^{-\frac{1}{6}-\delta} \leq \lambda_{N}' \leq C, \end{array}$

where

$$\lambda_{N} := \min_{1 \le i \le N-1} \{ x_{i+1} - x_i \},$$
(11)

$$Y'_{N} := \max_{1 \le i \le N-1} \{ x_{i+1} - x_i \}.$$
(12)

Theorem (bunch size)

For any $\delta > 0$ and any 0 < s < 1, there exist positive constants C and $C_{\delta,s}$ such that, for all N and for any energy minimizer X_N , we have

(lower bound)
$$w_N := x_N - x_1 \ge CN^{\frac{1}{2}} (\log N)^{-\frac{1}{2}}$$
, (13)
(upper bound) $\min \{x_{i+1 \le N!} - x_i\} \le C_{\delta \le N} N^{\frac{1}{2} + \delta}$. (14)

Since δ can be arbitrarily small in these theorems, we essentially obtain the relations as $N \to \infty$:

$$\begin{array}{ll} (\text{minimum energy}) & E_N \sim N^2 \log N, & (15) \\ (\text{minimal terrace length}) & \lambda_N \sim N^{-\frac{1}{2}}, & (16) \\ & (\text{bunch size}) & w_N \sim N^{\frac{1}{2}}, & (17) \end{array}$$

Recall that the size of the reference state (uniform step train) is

$$L = NI \sim N. \tag{18}$$

Lennard–Jones (m, n) potential with interaction range index γ

$$E[X_N] = \sum_{1 \le i < j \le N, \ j-i \le N^{\gamma}} e(x_j - x_i)$$
(19)
$$e(x) = \begin{cases} -\frac{\alpha_1}{m} |x|^{-m} + \frac{\alpha_2}{n} |x|^{-n} & , -1 < m < n, m \ne 0, n \ne 0, \\ \alpha_1 \log |x| + \frac{\alpha_2}{n} |x|^{-n} & , 0 = m < n, \\ -\frac{\alpha_1}{m} |x|^{-m} - \alpha_2 \log |x| & , -1 < m < n = 0. \end{cases}$$
(20)

Notice that:

In epitaxial growth model, LJ (0,2), 'step-bunching' appears. However, in the classical LJ (6,12), 'bunching' phenomenon is never mentioned.

Figure: Phase Diagram of the Scaling Law. This diagram characterizes the scaling behaviors of Lennard-Jones (m, n) potential with $\gamma = 1$.

Case C: -1 < m < 1 < n, 'bunching' regime. ($\limsup_{N \to +\infty} \frac{w_N}{N} = 0$) Case E: 1 < m < n, 'non-bunching' regime. ($\liminf_{N \to +\infty} \frac{w_N}{N} > 0$)

Theorem (bunching regime)

Suppose that -1 < m < 1, 1 < n, and $0 < \gamma \le 1$. There exist positive constants C, C', θ , and N₀ such that, for any N > N₀ and any energy minimizer X_N, we have (A) energy scaling law

$$CN^{1+\frac{(1-m)n\gamma}{n-m}} \le E_N \le C'N^{1+\frac{(1-m)n\gamma}{n-m}}, \qquad -1 < m < 0,$$
 (21)

$$-CN^{1+\frac{(1-m)n\gamma}{n-m}} \le E_N \le -C'N^{1+\frac{(1-m)n\gamma}{n-m}}, \qquad 0 < m < 1,$$
(22)

$$\frac{n-1}{2n}N^2\log N - CN^2\log\log N \le E_N \le \frac{n-1}{2n}N^2\log N + C'N^2, \qquad m = 0, \gamma = 1,$$
(23)

$$\frac{n-1\gamma}{n}N^{1+\gamma}\log N - CN^{1+\gamma}\log\log N \le E_N \le \frac{(n-1)\gamma}{n}N^{1+\gamma}\log N + C'N^{1+\gamma}, \qquad m = 0, 0 < \gamma < 1;$$
(24)

Theorem (bunching regime)

(B) minimal terrace length

$$CN^{-\frac{(1-m)\gamma}{n-m}} \leq \lambda_N \leq C'N^{-\frac{(1-m)\gamma}{n-m}}, \quad -1 < m < 1, m \neq 0, \quad (25)$$
$$CN^{-\frac{\gamma}{n}} (\log N)^{-\frac{1}{n}} \leq \lambda_N \leq C'N^{-\frac{\gamma}{n}}, \quad m = 0; \quad (26)$$

(C) system size

$$CN^{1-\frac{(1-m)\gamma}{n-m}} \le w_N \le C'N^{1-\theta}, \quad -1 < m < 1, m \neq 0, \quad (27)$$
$$CN^{1-\frac{\gamma}{n}} (\log N)^{-\frac{1}{n}} \le w_N \le C'N^{1-\theta}, \quad m = 0. \quad (28)$$

In particular, we have $\lambda_N \ll 1$, and the system is in the bunching regime

$$\limsup_{N\to+\infty} \frac{w_N}{N}=0.$$

Remark that C and C' may be different in part (A), (B), and (C).

Theorem (non-bunching regime)

Suppose that either (i) 1 < m < n, $0 \le \gamma \le 1$ or (ii) -1 < m < 1 < n, $\gamma = 0$. There exist positive constants C, C', and N₀ such that, for any $N > N_0$ and any energy minimizer X_N , we have (A) energy scaling law

$$-CN \le E_N \le -C'N; \tag{29}$$

(B) minimal terrace length

$$C \le \lambda_N \le C';$$
 (30)

(C) system size

$$CN \le w_N \le C'N.$$
 (31)

In particular, we have $\lambda_N = O(1)$, and the system is in the non-bunching regime,

$$\inf \inf_{N \to +\infty} \frac{w_N}{N} > 0.$$

Tao Luo (HKUST)

Step Bunching in Epitaxial Growth

To sum up, we have shown the asymptotic behaviors for two different regimes:

bunching regime	$-1 < m < 1 < n, 0 < \gamma \leq 1,$	(32)
non-bunching regime	$\lambda_{\it N} \ll 1, \; { m limsup}_{{\it N} ightarrow +\infty} {w_{\it N}\over {\it N}} =$ 0;	(33)
	$\gamma = 0 ext{ or } 1 < \mathit{m} < \mathit{n}, 0 < \gamma \leq 1,$	(34)
	$\lambda_N = O(1), \ \liminf_{N \to +\infty} \frac{w_N}{N} > 0.$	(35)

Continuum model

$$h_t = \frac{\partial^2}{\partial x^2} \left[-H(h_x) - \eta \left(\frac{1}{h_x} + \gamma h_x \right) h_{xx} \right]$$
(36)

where Hilbert transform $H(f)(x) = \frac{1}{\pi}p.v.\int_{-\infty}^{+\infty} \frac{f(y)}{x-y} dy$. In the periodic case, the energy

$$E^{c}[h] = \int_{-L/2}^{L/2} \left(-\frac{\pi\alpha_{1}}{2} \tilde{h} H(\tilde{h}_{x}) + \pi\alpha_{1} \eta h_{x} \log h_{x} + \pi\alpha_{1} \frac{\eta\gamma}{6} h_{x}^{3} \right) \mathrm{d}x, \quad (37)$$

where $\tilde{h} = h - Ax$. A is the average slope. Fix L and let $\varepsilon = \eta \rightarrow 0$.

- Existence. WLOG h(0) = 0.
- Slope *h_x* is symmetric and unimodal:

$$h_x(\xi) \le h_x(\xi'), \ -L/2 < \xi < \xi' < 0;$$
 (38)

$$h_x(\xi) \ge h_x(\xi'), \ 0 < \xi < \xi' < L/2.$$
 (39)

Large slope parts concentrate in a narrow band

$$H - \varepsilon^{\beta} < h(\varepsilon^{\alpha}) - h(-\varepsilon^{\alpha}) < H.$$
(40)

• Step bunch size determined by matched asymptotics: size $\sim \eta^{1/2}$.

These results are consistent with the discrete ones.

4. Conclusion

For Tersoff's discrete model, we have

- Existence
- Energy scaling law
- One bunch structure
- Optimal bunch size and slope
- For Xiang's continuum model, we have
 - Existence
 - One bunch structure
 - Optimal bunch size and slope

For one-dimensional system with LJ (m, n) interaction, we have

- A phase diagram
- 'Bunching' depends on interaction range N^γ
- Energy and length scaling laws in bunching/non-bunching regime

- Dynamics (e.g. coarsening rate, different time stages)
- 2+1 dimensional model

Thank you for your attention!