Parallel computing for interface problems

Li Luo
Department of Mathematics
The Hong Kong University of Science and Technology, Hong Kong
Jan 5, 2017

Tianhe2
Top 1 of 2013.06

- Peak: 55 PF
- HPL: 33.8 PF
- Cores: 3.12 M
- Arch: CPU-MIC

Sunway TaihuLight
Top 1 of 2016.06

- Peak: 125 PF
- HPL: 93 PF
- Cores: 10.6 M
- Arch: Sunway 26010 chip
- Gordon Bell Prize: 2016.11 Weather Patterns

The coupled Cahn-Hilliard Navier-Stokes equations:

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial t}+(\mathbf{u} \cdot \nabla) \phi=\mathcal{L}_{d} \Delta \mu, & \text { in } \Omega, \\
\mu=-\epsilon \Delta \phi-\frac{\phi}{\epsilon}+\frac{\phi^{3}}{\epsilon}, & \text { in } \Omega, \\
\operatorname{Re} \rho\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right)=-\nabla p+\nabla \cdot(\eta D(\mathbf{u}))+\mathcal{B} \mu \nabla \phi+\mathbf{g}_{\text {ext }}, & \text { in } \Omega, \\
\nabla \cdot \mathbf{u}=0, & \text { in } \Omega . \\
& \\
\qquad=\frac{1+\phi}{2}+\lambda_{\rho} \frac{1-\phi}{2}, & \eta=\frac{1+\phi}{2}+\lambda_{\eta} \frac{1-\phi}{2},
\end{array}
$$

The generalized Navier boundary condition:

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial t}+u_{\tau} \partial_{\tau} \phi=-\mathcal{V}_{s} L(\phi), & \text { on } \Gamma_{w}, \\
\left(\mathcal{L}_{s} l_{s}\right)^{-1} u_{\tau}=\mathcal{B} L(\phi) \partial_{\tau} \phi / \eta-\mathbf{n} \cdot D(\mathbf{u}) \cdot \boldsymbol{\tau}, & \text { on } \Gamma_{w}, \\
u_{n}:=\mathbf{u} \cdot \mathbf{n}=0, \quad \partial_{n} \mu=0, & \text { on } \Gamma_{w} .
\end{array}
$$

Cahn-Hilliard system:

- 2×2 block element stiffness matrix for ϕ_{h}^{n+1} and μ_{h}^{n+1} : non-symmetric

$$
\left(\begin{array}{ll}
K_{\phi \phi}^{n} & K_{\phi \mu}^{n} \tag{0.8}\\
K_{\mu \phi}^{n} & K_{\mu \mu}^{n}
\end{array}\right) \text { and }\binom{F_{\phi}^{n}}{F_{\mu}^{n}}
$$

- If treat the nonlinear term explicitly: constant coefficients
- The unknowns are ordered node by node so that the nonzeros are placed as close as possible in the matrix:

Figure: (a) Matrix pattern of the Cahn-Hilliard system obtained using the linear decoupled scheme on a structured mesh. (b) An enlarged view.

Velocity system of Navier-Stokes equations:

- In complex domains, one should combine all the components of

$$
\mathbf{u}=\left(u_{x}, u_{y}, u_{z}\right), \quad \mathbf{n}=\left(n_{x}, n_{y}, n_{z}\right), \quad \boldsymbol{\tau}=\left(\tau_{x}, \tau_{y}, \tau_{z}\right)
$$

together into calculation, leading to 3×3 block element stiffness matrices.

$$
\left(\begin{array}{lll}
K_{u_{x} u_{x}}^{n} & K_{u_{x} u_{y}}^{n} & K_{u_{x} u_{z}}^{n} \tag{0.9}\\
K_{u_{y} u_{x}}^{n} & K_{u_{u_{y} u_{y}}} & K_{u_{y} u_{z}}^{n} \\
K_{u_{z} u_{x}}^{n} & K_{u_{z} u_{y}}^{n} & K_{u_{z} u_{z}}^{n}
\end{array}\right) \text { and }\left(\begin{array}{c}
F_{u_{x}}^{n} \\
F_{u_{y}}^{n} \\
F_{u_{z}}^{n}
\end{array}\right)
$$

(a)

(b)

Pressure system of Navier-Stokes equations:

$$
\begin{equation*}
\left(\nabla\left(p_{h}^{n+1}-p_{h}^{n}\right), \nabla q_{h}\right)=-\frac{\bar{\rho}}{\delta t} \operatorname{Re}\left(\nabla \cdot \mathbf{u}_{h}^{n+1}, q_{h}\right) \tag{0.10}
\end{equation*}
$$

The resulting element stiffness matrix is symmetric positive definite.

$$
\begin{aligned}
& K_{p}^{n}(i, j)=\left(\nabla \chi_{i}, \nabla \chi_{j}\right), \\
& F_{p}^{n}(i)=-\frac{\bar{\rho}}{\delta t} \operatorname{Re}\left(\nabla \cdot \mathbf{u}_{h}^{n+1}, \chi_{i}\right)+\left(\nabla p_{h}^{n}, \nabla \chi_{i}\right) .
\end{aligned}
$$

(c)

(d)

Three linear systems for $\left(\phi_{h}^{n+1}, \mu_{h}^{n+1}\right), \mathbf{u}_{h}^{n+1}$ and p_{h}^{n+1} respectively, i.e.

$$
\begin{equation*}
A_{h} x=b_{h} \tag{0.11}
\end{equation*}
$$

Features of A_{h} :

- A_{h} is very large for 3D problems
- A_{h} is ill-conditioned, $\kappa\left(A_{h}\right)=\frac{\max _{i} \lambda_{i}}{\min _{i} \lambda_{i}}$
- A_{h} is sparse

Comparison:

- Direct methods: Gaussian elimination or its variation

Exact solution can be obtained if without rounding error Great cost on memory

- Fast algorithms: FFT and cyclic reduction methods

Not suitable for general matrices and distributed memory system

- Iterative methods:

Lower memory requirement and generally fewer arithmetic operations
Easy to implement in parallel

Preconditioned Conjugate Gradient Method

$$
\begin{aligned}
& r_{h}^{0}=b_{h}-A_{h} x_{h}^{0} \\
& M_{h} z_{h}^{0}=r_{h}^{0} \\
& p_{h}^{0}=z_{h}^{0} \\
& \text { For } k=0,1, \ldots, N \\
& \alpha_{k}=\frac{\left(z_{h}^{k}, r_{h}^{k}\right)}{\left(p_{h}^{k}, A_{h} p_{h}^{k}\right)} \\
& x_{h}^{k+1}=x_{h}^{k}+\alpha_{k} p_{h}^{k} \\
& r_{h}^{k+1}=r_{h}^{k}-\alpha_{k} A_{h} p_{h}^{k} \\
& M_{h} z_{h}^{k+1}=r_{h}^{k+1} \\
& \beta_{k+1}=\frac{\left(z_{h}^{k+1}, r_{h}^{k+1}\right)}{\left(z_{h}^{k}, r_{h}^{k}\right)} \\
& p_{h}^{k+1}=z_{h}^{k+1}+\beta_{k+1} p_{h}^{k}
\end{aligned}
$$

- Memory: Store four vectors ($x_{h} ; z_{h} ; p_{h} ; r_{h}$) and possibly a sparse matrix
- $\kappa\left(M_{h}^{-1} A_{h}\right) \ll \kappa\left(A_{h}\right)$, or M_{h} is spectrally close to A_{h}
- $M_{h}^{-1} x_{h}$ has to be easy to compute, easy to parallelize

Parallel Computing

Distributive Computing based on MPI

Distributed Memory

Domain Decomposition

Subdivision of matrix and vector

Domain decomposition methods

- Interface problem requires a very fine mesh to capture the interface, especially in 3D as $\epsilon \rightarrow 0$.
- A partition of the domain $\Omega_{h}=\Omega_{h, 1} \cup \cdots \cup \Omega_{h, n p}$ where $\Omega_{h, i} \cap \Omega_{h, j}=\emptyset$ for all $i \neq j$.
- Meshes are partitioned using Metis on a relatively coarse level and are refined sufficiently for computation.

Figure: (a) A sample partition of a structured mesh into 8 subdomains, (b) a partition of an unstructured mesh into 16 subdomains, (c) a sample partition into 24 subdomains.

Right preconditioning of the linear system

$$
\begin{equation*}
A_{h} M_{h}^{-1} y_{h}=b_{h}, \text { with } x_{h}=M_{h}^{-1} y_{h}, \tag{0.12}
\end{equation*}
$$

A geometrical restrict additive Schwarz (RAS) [Cai1999] preconditioned GMRES method is employed to solve the implicit systems of (ϕ, μ) and \mathbf{u}.

$$
\begin{aligned}
& b_{h, i}^{\delta}=R_{h, i}^{\delta} b_{h}=\left(\begin{array}{ll}
I & 0
\end{array}\right)\binom{b_{h, i}^{\delta}}{b \backslash b_{h, i}^{\delta}}, \\
& M_{h}^{-1}=\sum_{i=1}^{n p}\left(R_{h, i}^{0}\right)^{T}\left(A_{h, i}\right)^{-1} R_{h, i}^{\delta}, \\
& A_{h, i}=R_{h, i}^{\delta} A_{h}\left(R_{h, i}^{\delta}\right)^{T} .
\end{aligned}
$$

Subdomain solver: Incomplete LU (ILU) factorization

$$
A_{h, i}=L_{h, i} U_{h, i}+P_{h, i}
$$

where $P_{h, i}$ satisfies some criteria such as preserving certain sparsity patterns. Details about the ILU(p) factorization can be found in [Saad2003].

An algebraic multigrid (AMG) preconditioned CG method is used to solve the pressure Poisson system.

- BoomerAMG from Hypre library
- Smoothed Aggregation in PETSc library

$$
\text { AMG: } x_{l}=A M G_{l}\left(x_{l}, d_{l}\right)
$$

0 . If on the coarsest level, then:
Solve $C_{l} x_{I}=d_{l}$ by Gaussian elimination, else:

1. Apply μ steps of smoothing to $C_{l} x=d_{l}$
2. Coarse grid correction:
(a). Set $d_{l+1}=\left(l_{l+1}^{l}\right)^{T}\left(d_{l}-C x_{l}\right)$ and $x_{l+1}=0$
(b). Solve the coarse problem $B_{l+1} x_{I+1}=d_{l+1}$ by γ applications of $x_{l+1}=A M G_{I+1}\left(x_{l+1}, d_{l+1}\right)$
(c). Then correct the solution on the level /
by $x_{l} \leftarrow x_{l}+l_{l+1}^{\prime} x_{l+1}$

3. Apply μ steps of smoothing to $C_{l} x=d_{l}$.

Figure: The overall solution procedure.

Parallel performance

A droplet spreading on rough surface with unstructured mesh of $212,434,560$ elements and $31,711,677$ vertices. The scalability tests are performed on the Tianhe 2 supercomputer.
Table: The scalability test for the proposed solution algorithm. The average number of GMRES(CG) iterations, compute time per time step, and speedup for solving the Cahn-Hilliard system, the velocity system, and the pressure system.

\#unknowns	Cahn-Hilliard system 63,423,354			$\begin{gathered} \hline \text { velocity system } \\ 95,135,031 \end{gathered}$			$\begin{gathered} \hline \text { pressure system } \\ 31,711,677 \\ \hline \end{gathered}$		
$n p$	GMRES	time	sp.	GMRES	time	sp.	CG	time	sp.
512	8.1	12.68	1	9.3	23.27	1	30	11.88	1
1,024	7.4	6.48	1.96	9.8	11.88	1.96	30.4	6.46	1.84
2,048	8.4	3.45	3.68	9.6	6.65	3.50	32.3	3.56	3.34
4,096	8.3	1.87	6.78	10.1	3.71	6.27	31.1	2.0	5.94

Parallel performance

The two-phase bumpy channel flow with unstructured mesh of 301,412,352 elements and $51,270,353$ vertices. The scalability tests are performed on the Tianhe 2 supercomputer.

Table: The scalability test for the two-phase bumpy channel flow case. The average number of GMRES (CG) iterations, compute time per time step, and speed up for solving the Cahn-Hilliard system, the velocity system, and the pressure system. "-" means the case fails to converge.

		Cahn-Hilliard system \#unknowns=102,540,706			$\begin{gathered} \text { velocity system } \\ \text { \#unknowns=153,811,059 } \\ \hline \end{gathered}$			pressure system \#unknowns=51,270,353			
$n p$	subsolve	GMRES	time	sp.	GMRES	time	sp.	sweep	CG	time	sp.
1,920	ILU(2)	71.6	4.74	1	-	-	-	1	24.7	2.85	1
1,920	ILU(3)	20.5	2.96	1	28.1	13.43	1	2	21.2	3.41	1
1,920	ILU(4)	15.9	3.37	1	18.6	18.72	1	3	20.6	4.20	1
5,760	ILU(2)	79.6	2.72	1.74	-	-	-	1	24.7	1.28	2.23
5,760	ILU(3)	21.2	1.31	2.26	28.3	5.32	2.52	2	19.7	1.60	2.13
5,760	ILU(4)	17.1	1.46	2.31	18.9	7.19	2.60	3	20	1.78	2.36
9,600	ILU(2)	77.7	1.58	3	-	-	-	1	25.6	1.1	2.59
9,600	ILU(3)	22.2	1.07	2.76	33.4	4.09	3.86	2	21.3	1.47	2.32
9,600	ILU(4)	17.9	1.15	2.93	24.6	5.37	3.49	3	20.6	1.61	2.61

(d)

(e)

(f)

Parallel performance

The two-phase Couette flow with structured mesh of 9,584,640 elements and $8,520,321$ vertices. The scalability tests are performed on the Sunway TaihuLight supercomputer.

Table: The average number of iterations, compute time per time step, and speed up for solving the Cahn-Hilliard-velocity system

	Cahn-Hilliard-velocity system					
\#unknowns	$42,601,605$					

(g)

(h)

(i)

Thank You

