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Rapid development of supercomputers

Tianhe2
Top 1 of 2013.06

Peak: 55 PF

HPL: 33.8 PF

Cores: 3.12 M

Arch: CPU-MIC

Sunway TaihuLight
Top 1 of 2016.06

Peak: 125 PF

HPL: 93 PF

Cores: 10.6 M

Arch: Sunway 26010 chip

Gordon Bell Prize: 2016.11 –
Weather Patterns

2 / 17



Mathematical model

The coupled Cahn-Hilliard Navier-Stokes equations:

∂φ

∂t
+ (u · ∇)φ = Ld ∆µ, in Ω, (0.1)

µ = −ε∆φ−
φ

ε
+
φ3

ε
, in Ω, (0.2)

Reρ
(
∂u
∂t

+ (u · ∇)u
)

= −∇p +∇ · (ηD(u)) + Bµ∇φ+ gext , in Ω, (0.3)

∇ · u = 0, in Ω. (0.4)

ρ =
1 + φ

2
+ λρ

1− φ
2

, η =
1 + φ

2
+ λη

1− φ
2

,

The generalized Navier boundary condition:

∂φ

∂t
+ uτ∂τφ = −VsL(φ), on Γw , (0.5)

(Ls ls)−1uτ = BL(φ)∂τφ/η − n · D(u) · τ , on Γw , (0.6)

un := u · n = 0, ∂nµ = 0, on Γw . (0.7)
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Cahn-Hilliard system:

2× 2 block element stiffness matrix for φn+1
h and µn+1

h : non-symmetric(
K n
φφ K n

φµ

K n
µφ K n

µµ

)
and

(
F n
φ

F n
µ

)
(0.8)

If treat the nonlinear term explicitly: constant coefficients
The unknowns are ordered node by node so that the nonzeros are placed as
close as possible in the matrix:
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Figure: (a) Matrix pattern of the Cahn-Hilliard system obtained using the linear decoupled
scheme on a structured mesh. (b) An enlarged view.
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Velocity system of Navier-Stokes equations:

In complex domains, one should combine all the components of

u = (ux , uy , uz ), n = (nx , ny , nz ), τ = (τx , τy , τz )

together into calculation, leading to 3× 3 block element stiffness matrices.
K n

ux ux K n
ux uy K n

ux uz

K n
uy ux K n

uy uy K n
uy uz

K n
uz ux K n

uz uy K n
uz uz

 and

F n
ux

F n
uy

F n
uz

 (0.9)
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Pressure system of Navier-Stokes equations:

(
∇(pn+1

h − pn
h),∇qh

)
= −

ρ̄

δt
Re(∇ · un+1

h , qh). (0.10)

The resulting element stiffness matrix is symmetric positive definite.

K n
p (i, j) = (∇χi ,∇χj ),

F n
p (i) = −

ρ̄

δt
Re(∇ · un+1

h , χi ) + (∇pn
h ,∇χi ).
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Iterative methods

Three linear systems for (φn+1
h , µn+1

h ), un+1
h and pn+1

h respectively, i.e.

Ahx = bh (0.11)

Features of Ah:

• Ah is very large for 3D problems

• Ah is ill-conditioned, κ(Ah) = maxi λi
mini λi

• Ah is sparse

Comparison:

• Direct methods: Gaussian elimination or its variation
Exact solution can be obtained if without rounding error
Great cost on memory

• Fast algorithms: FFT and cyclic reduction methods
Not suitable for general matrices and distributed memory system

• Iterative methods:
Lower memory requirement and generally fewer arithmetic operations
Easy to implement in parallel
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Iterative Methods

Preconditioned Conjugate Gradient Method

r0
h = bh − Ahx0

h
Mhz0

h = r0
h

p0
h = z0

h
For k = 0, 1, . . . ,N

αk =
(zk

h ,r
k
h )

(pk
h ,Ahpk

h )

xk+1
h = xk

h + αk pk
h

r k+1
h = r k

h − αk Ahpk
h

Mhzk+1
h = rk+1

h

βk+1 =
(zk+1

h ,rk+1
h )

(zk
h ,r

k
h )

pk+1
h = zk+1

h + βk+1pk
h

Memory: Store four vectors (xh; zh; ph; rh) and possibly a sparse matrix

κ(M−1
h Ah)� κ(Ah), or Mh is spectrally close to Ah

M−1
h xh has to be easy to compute, easy to parallelize
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Parallel Computing

Distributive Computing based on MPI

Distributed Memory Domain Decomposition

Subdivision of matrix and vector
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Domain decomposition methods

Interface problem requires a very fine mesh to capture the interface, especially in
3D as ε→ 0.

A partition of the domain Ωh = Ωh,1 ∪ · · · ∪ Ωh,np where Ωh,i ∩ Ωh,j = ∅ for all
i 6= j .

Meshes are partitioned using Metis on a relatively coarse level and are refined
sufficiently for computation.

(e) (f) (g)

Figure: (a) A sample partition of a structured mesh into 8 subdomains, (b) a partition of an
unstructured mesh into 16 subdomains, (c) a sample partition into 24 subdomains.
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Right preconditioning of the linear system

AhM−1
h yh = bh, with xh = M−1

h yh, (0.12)

A geometrical restrict additive Schwarz (RAS) [Cai1999] preconditioned GMRES
method is employed to solve the implicit systems of (φ, µ) and u.

bδh,i = Rδh,i bh = (I 0)

(
bδh,i

b\bδh,i

)
,

M−1
h =

np∑
i=1

(R0
h,i )

T (Ah,i )
−1Rδh,i ,

Ah,i = Rδh,i Ah(Rδh,i )
T .

Subdomain solver: Incomplete LU (ILU) factorization

Ah,i = Lh,i Uh,i + Ph,i ,

where Ph,i satisfies some criteria such as preserving certain sparsity patterns. Details
about the ILU(p) factorization can be found in [Saad2003].
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An algebraic multigrid (AMG) preconditioned CG method is used to solve the pressure
Poisson system.
— BoomerAMG from Hypre library
— Smoothed Aggregation in PETSc library

AMG: xl = AMGl (xl , dl ):

0. If on the coarsest level, then:
Solve Cl xl = dl by Gaussian elimination, else:

1. Apply µ steps of smoothing to Cl x = dl
2. Coarse grid correction:

(a). Set dl+1 = (I l
l+1)T (dl − Cxl ) and xl+1 = 0

(b). Solve the coarse problem Bl+1xl+1 = dl+1
by γ applications of xl+1 = AMGl+1(xl+1, dl+1)

(c). Then correct the solution on the level l
by xl ← xl + I l

l+1xl+1
3. Apply µ steps of smoothing to Cl x = dl .
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Figure: The overall solution procedure.
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Parallel performance

A droplet spreading on rough surface with unstructured mesh of 212,434,560 elements
and 31,711,677 vertices. The scalability tests are performed on the Tianhe 2
supercomputer.

Table: The scalability test for the proposed solution algorithm. The average number of GMRES(CG)
iterations, compute time per time step, and speedup for solving the Cahn-Hilliard system, the
velocity system, and the pressure system.

Cahn-Hilliard system velocity system pressure system
#unknowns 63,423,354 95,135,031 31,711,677

np GMRES time sp. GMRES time sp. CG time sp.
512 8.1 12.68 1 9.3 23.27 1 30 11.88 1

1,024 7.4 6.48 1.96 9.8 11.88 1.96 30.4 6.46 1.84
2,048 8.4 3.45 3.68 9.6 6.65 3.50 32.3 3.56 3.34
4,096 8.3 1.87 6.78 10.1 3.71 6.27 31.1 2.0 5.94
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Parallel performance

The two-phase bumpy channel flow with unstructured mesh of 301,412,352 elements and
51,270,353 vertices. The scalability tests are performed on the Tianhe 2 supercomputer.

Table: The scalability test for the two-phase bumpy channel flow case. The average number of
GMRES (CG) iterations, compute time per time step, and speed up for solving the Cahn-Hilliard
system, the velocity system, and the pressure system. “-" means the case fails to converge.

Cahn-Hilliard system velocity system pressure system
#unknowns=102,540,706 #unknowns=153,811,059 #unknowns=51,270,353

np subsolve GMRES time sp. GMRES time sp. sweep CG time sp.
1,920 ILU(2) 71.6 4.74 1 - - - 1 24.7 2.85 1
1,920 ILU(3) 20.5 2.96 1 28.1 13.43 1 2 21.2 3.41 1
1,920 ILU(4) 15.9 3.37 1 18.6 18.72 1 3 20.6 4.20 1
5,760 ILU(2) 79.6 2.72 1.74 - - - 1 24.7 1.28 2.23
5,760 ILU(3) 21.2 1.31 2.26 28.3 5.32 2.52 2 19.7 1.60 2.13
5,760 ILU(4) 17.1 1.46 2.31 18.9 7.19 2.60 3 20 1.78 2.36
9,600 ILU(2) 77.7 1.58 3 - - - 1 25.6 1.1 2.59
9,600 ILU(3) 22.2 1.07 2.76 33.4 4.09 3.86 2 21.3 1.47 2.32
9,600 ILU(4) 17.9 1.15 2.93 24.6 5.37 3.49 3 20.6 1.61 2.61
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Parallel performance

The two-phase Couette flow with structured mesh of 9,584,640 elements and
8,520,321 vertices. The scalability tests are performed on the Sunway TaihuLight
supercomputer.

Table: The average number of iterations, compute time per time step, and speed up for solving the
Cahn-Hilliard-velocity system

Cahn-Hilliard-velocity system
#unknowns 42,601,605

subsolve ILU(2) rPBGS(2)
np GMRES time sp. GMRES time sp.
512 33.3 103.95 - 114.2 65.48 -

1,024 34.5 55.79 1.86 121.3 26.09 2.51
2,048 35.9 30.05 3.46 129.2 14.00 4.68
4,096 38.9 17.42 5.97 137 8.14 8.04
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Thank You

17 / 17


