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Motivation -
Determining "Hydrodynamical"
Boundary (Inverse Problem)

Model
Problem

-
Stokes Equation + Navier Slip
Boundary Condition

Analytical
Results

-
Eigenvalues & Eigenfunctions in
Periodic Channels
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Micro�uidic Dynamics
At small scales (channel diameters from around  to
around ).
If Navier-Stokes still holds,

with

Low Reynolds number, .

Dissipation dominated by viscosity effects.
Fluid particles moving along smooth paths in laminar or
layers.

100nm
100μm

ρ( + u ⋅ ∇u) = −∇p + η u + f ,
∂u
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Stokes Approximation, Boundary
Slip

Dropping inertial term (Stokes approximation), assuming
zero body force and incompressibility,

Instead of usual non-slip bounadry conditions, there is a
slip at the solid surface due to intermediate Knudsen
number,

ρ v∂t
∇ ⋅ v

= −∇p + ∇ ⋅ (η∇v),
= 0.

=uslip Ls
∂uτ
∂n
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Navier Slip Length

When 

small enough, non-slip
boundary condition is
accurate.

≈Ls LMFP

Kn =
LMFP

H

Image from http://www.mdpi.com/1422-0067/10/11/4638/htm.
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Even Narrower Channels
If channel width is only around , the model above fails
again due to the presence of density boundary layer. 

Image from [Ping Sheng et al., Physical Review E, 2015]

100σ



Molecular Dynamics
Model validation and determining model parameters
directly from MD simulation.
At equilibrium, the system experiences thermal
�uctuations (FDT).
In linear response regime, longevity of a speci�c mode 
can be determined by:

Calculating its autocorrelation function

.

.

U

(Δt) =CU
⟨( (t= )U( , ))( (t= +Δt)U( , ))⟩∑N
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Matching Spectral Fingerprints
Take  from a one-
parameter group by
�xing .

Plot  against ,

and obtain
eigenvalues as local
peaks.

U

k

τdecay λ

Image from [Ping Sheng et al., Physical Review E, 2015]
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Even Narrower Channels Cont.
A modi�ed model can be derived in this way

Image from [Ping Sheng et al., Physical Review E, 2015]
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However..
One obvious caveat is that not all families of eigenfunctions
are investigated.
To validate the conjectured model above, we have to obtain
the full set of eigenfunctions of the model.
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Existing Results
Taking , the problem reduces to the one considered
by Steven A. Orszag in 1986.
Later, Orszag's results are applied to analyse accuracy and
stability of Chorin's projection method and its variants.
See, for example [Weinan E and Jianguo Liu, 1995, 1996].

= 0ls
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A 1D System
We consider the domain to be a 2D periodic channel

The generalized eigenvalue problem can be written as

Subject to periodic boundary conditions at :

and slip boundary conditions at :

Key observation: pressure Poisson equation is a Laplace
equation!

Ω = [−l, l] × [−h, h].

u + λu∇2

∇ ⋅ u
= ∇p,
= 0.

x = ±l
u(x + 2l, y) = u(x, y), p(x + 2l, y) = p(x, y),

y = ±h
= ∓ .ls∂yux ux



Solution Procedure
Solutions to the eigenvalue problem is of the form

where .

General solution to the pressure Poisson equation:

Then from Stokes equation,

(x, y)uk

(x, u)pk

= (y) ,û k eikx

= (y) ,p̂ k eikx

k ∈ 
π
l

(x, y) = + .p̂ k c1e
ky c2e

−ky

(x, y)û k,x

(x, y)û k,y

= + + ( + ),axe
i ykλ bxe

−i ykλ
ik

λ
c1e

ky c2e
−ky

= + + ( − ),aye
i ykλ bye

ykλ
ik

λ
c1e

ky c2e
−ky
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Solution Procedure (2)
Now, the solution is fully determined by six constants

Using boundary conditions and incompressibility
constraints, the eigenvalue problem is reduced to a linear
system

where  is a  matrix.
For the problem to have nontrivial solutions, the
characteristic equation has to be satis�ed

Par = [ , , , , , .ax ay bx by c1 c2]
T

A(h, l, , λ)Par = 0,ls
A 6 × 6

det(A) = 0.



Results
When , there are two cases:

Asymmetric: , 
Symmetric: , 

When , also two cases ( :

.

.

k = 0

tan( h) = −λ√ ls λ√ = [sin( y), 0 .u0λ λ√ ]T

cot( h) =λ√ ls λ√ = [cos( y), 0 .u0λ λ√ ]T

k ≠ 0 = )kλ λ − k2
‾ ‾‾‾‾‾√

cot( h) − k coth(kh) − λ = 0kλ kλ ls

= [ ]ukλ eikx
ik cosh(ky) − i cos( y)kλ

cosh(kh)

sin( hkλ
kλ

k sinh(ky) − k sin( y)
sinh(kh)

sin( h)kλ
kλ

tan( h) + k tanh(kh) + λ = 0kλ kλ ls

= [ ]ukλ eikx
ik sinh(ky) − i sin( y)kλ

cosh(kh)

cos( hkλ
kλ

k cosh(ky) − k cos( y)
cosh(kh)

cos( h)kλ
kλ
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Discussion
Theorem: Each eigenvalue  obtained is monotonically
decreasing in Navier length . 
Proof: Directly calculate  via implicit function
theorem.
More slip = more dissipation on ALL modes.
A counterintuitive fact: Numerical tests show that the �rst
antisymmetric mode for  and the �rst mode for 
has close eigenvalues even when .

λ
ls

∂λ/∂ls

k = 0 k = 1

l/h⟶ ∞
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Summary
A normal mode analysis is
carried out for Stokes equation
subject to Navier slip boundary
conditions.
Link to previous studies is
drawn.
Application to determining
hydrodynamics boudary
conditions is discussed.

Thanks for your
attention!



5 . 2

Wish List
A generic numerical method would be nice to have to deal
with

Two phase �ow
General geometry

BIM might be preferable for this task, being more friendly
to shifted inverse iteration / Arnoldi iteration.


