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Microfiuidic Dynamics

e At small scales (channel diameters from around 100nm to
around 100um).
e |[f Navier-Stokes still holds,

0
p<6—1:+u-Vu>=—Vp+;7V2u+f,

with

= Low Reynolds number, Re = % < 1000.

= Dissipation dominated by viscosity effects.

= Fluid particles moving along smooth paths in laminar or

ayers.




Stokes Approximation, Boundary
Slip

e Droppinginertial term (Stokes approximation), assuming
zero body force and incompressibility,

p@tv — —Vp + V. (ﬂVV),
V-v=0.
e Instead of usual non-slip bounadry conditions, thereis a

slip at the solid surface due to intermediate Knudsen
number,

ou;
Uslip = L E



Navier Slip Length

No-slip

Ly =~ Lyrp

When Kn = Lf‘g”

small enough, non-slip
boundary conditionis
accurate.

Image from http://www.mdpi.com/1422-0067/10/11/4638/htm.
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Even Narrower Channels

e |f channel width is only around 100¢, the model above fails
again due to the presence of density boundary layer.
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Image from [Ping Sheng et al., Physical Review E, 2015]



Molecular Dynamics

e Model validation and determining model parameters
directly from MD simulation.
e At equilibrium, the system experiences thermal

fluctuations (FDT).
e |nlinear response regime, longevity of a specific mode U

can be determined by:
= Calculating its autocorrelation function

Cu(Af) = (X, vit=t0)Uxiy)) (ZiL vili=to+ADU(x1,y))) )
v (T, vilt=t0)UGiy)) (T vit=to)UGxiy)) Yy
1

" Tdecay = T in(C)T




Matching Spectral Fingerprints

Take U from a one- 0l
parameter group by

(c)
fixing k. 80 | ﬁ/ - nk?
| 1/M = 183

Plot Tgecay against 4,

40 + J \
and obtain | \ﬁ
eigenvalues as local 0F i sswsi e Ts
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Image from [Ping Sheng et al., Physical Review E, 2015]



Fven Narrower Channels Cont.

e A modified model can be derived in this way
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Image from [Ping Sheng et al., Physical Review E, 2015]



However.

e One obvious caveat is that not all families of eigenfunctions

are investigated.
e Tovalidate the conjectured model above, we have to obtain

the full set of eigenfunctions of the model.



Existing Results

e Taking [, = 0, the problem reduces to the one considered
by Steven A. Orszagin 1986.

e Later, Orszag's results are applied to analyse accuracy and
stability of Chorin's projection method and its variants.
See, for example [Weinan E and Jianguo Liu, 1995, 1996].



A 1D System

We consider the domain to be a 2D periodic channel
Q =1[-L1] X[=h,h].
The generalized eigenvalue problem can be written as
Viu + Au = Vp,
V-u=0~0.
Subject to periodic boundary conditions at x = +I:
u(x + 2l y) = ulx,y), px+2y) = px,y),
and slip boundary conditions aty = +h:
[s0yuy = Fu,.
Key observation: pressure Poisson equation is a Laplace
equation!



Solution Procedure

e Solutions to the eigenvalue problem. is of the form
i (x,y) = fg(y)e™,
pr(x, u) = pr(y)e™,
wherek € 7 Z.

e General solution to the pressure Poisson equation:

P, y) = c1e” + cre™.
e Then from Stokes equation,
A - . ik _
iU (X, y) = a, e + b.e”hY 4 7(016@ + cre™),

. - ik _
iy (x,y) = aye™™ + bye' + —(c1€" = c2e™),



Solution Procedure (2)

Now, the solution is fully determined by six constants

Par = [ay, ay, by, by, ¢y, e 1.
Using boundary conditions and incompressibility
constraints, the eigenvalue problem is reduced to a linear
system

ACh, L, l;, )H)Par = 0,

where A isa 6 X 6 matrix.
For the problem to have nontrivial solutions, the
characteristic equation has to be satisfied

det(A) = 0.



Results

e When k = 0, there are two cases:
= Asymmetric: tan(v/Ah) = —I,A/2, ug; = [sin(\//_ly), 01".
= Symmetric: cot(v/Ah) = [/, ug; = [COS(\/_y), 0]'.
e Whenk # 0, alsotwo cases (k; = \/ﬂ k?):
» k, cot(kyh) — kcoth(kh) — [,4 = 0.

) i ik cosh(ky) — ik; C;;IZ,(CI;Z) cos(k;y)
kA = . inh(kh) .
 ksinh(ky) — k Ssll?l(]; h)) sin(kyy)

m k, tan(k,h) + k tanh(kh) + [;4 = 0.

ik sinh(ky) — ik, “fjj;gj;j sin(k;y)

cosh(kh)
 kcosh(ky) — k oSt cos(kry)

U = elkx




Discussion

e Theorem: Each eigenvalue A obtained is monotonically
decreasing in Navier length ;.
Proof: Directly calculate d4/0l; via implicit function
theorem.

e More slip = more dissipation on ALL modes.

e A counterintuitive fact: Numerical tests show that the first
antisymmetric mode for k = 0 and the first mode fork = 1
has close eigenvalues even when [/h — 0.



Summary

e A normal mode analysis is
carried out for Stokes equation
subject to Navier slip boundary
conditions.

e Link to previous studies is
drawn.

e Application to determining
hydrodynamics boudary Thanks for your
conditions is discussed. attention!



Wish List

e A generic numerical method would be nice to have to deal
with
= Two phase flow
= General geometry

e BIM might be preferable for this task, being more friendly
to shifted inverse iteration / Arnoldi iteration.



