Adaptive Kinetic Monte Carlo for Long Time Simulations and Global
Optimization
Hannes Jonsson, University of Iceland (Hátíðli Islands)

By searching in an unbiased way for possible thermal transitions from a given state, without preconceived notion of final states or transition mechanism, the long time scale evolution of a system can be simulated using the adaptive kinetic Monte Carlo algorithm [1]. Systematic coarse graining of the free energy landscape is important to avoid being slowed down by fast processes. Within the harmonic approximation to transition state theory (HTST), the challenging task is to find all relevant saddle points on the energy rim surrounding an initial state energy minimum [2]. More generally, within full TST, a high dimensional dividing surface needs to be constructed and optimized using Keck’s variational principle. In either case, the exact dynamics can, in principle, be obtained from short time trajectories started at the transition state [3]. This approach has been implemented to large extent in the distributed computing software EON (http://theochem.org/EON) [4] and applications to various atomic and spin systems will be described. A modification of the algorithm can be use for global optimization of objective functions of continuous variables [5]. Application to geothermal reservoir modeling will be discussed.