Recovery of algebraic-exponential data from moments and a generalization of the Lowner-John ellipsoid problem
Jean Lasserre, Centre National de la Recherche Scientifique (CNRS)

Let G be a bounded open subset of Euclidean space with real algebraic boundary Γ. In a first part of the talk we consider the case where $G=\{x: g(x) \leq 1\}$ for some quasi-homogeneous polynomial g and derive several properties of G as well as the non-Gaussian integral $\int \exp(-g)dx$. In particular, we show that the volume of G is a convex function of the coefficients of g and solve a generalization of the Lowner-John problem.

Next, we consider a more general case and under the assumption that the degree d of Γ is given, and the power moments of the Lebesgue measure on G are known up to order $3d$, we describe an algorithmic procedure for obtaining a polynomial vanishing on Γ. The particular case of semi-algebraic sets defined by a single polynomial inequality raises an intriguing question related to the finite determinateness of the full moment sequence. The more general case of a measure with density equal to the exponential of a polynomial is treated in parallel. Our approach relies on Stokes theorem and simple Hankel-type matrix identities.