
How Slow is Quadruple Precision?

Paul Zimmermann, INRIA, Nancy, France

May 7, 2020

ICERM Workshop on Variable Precision in Mathematical and
Scientific Computing

How Slow is Quadruple Precision? 1/26

Workshop Abstract: [...] Exascale computing has also exposed
the need for even greater precision than IEEE 64-bit double in
some cases, because greatly magnified numerical sensitivities often
mean that one can no longer be certain that results are numerically
reliable. One remedy is to use IEEE 128-bit quad precision in
selected portions of the computation, which is now available via
software in some compilers, notably the gfortran compiler. As a
single example, researchers at Stanford have had remarkable
success in using quad precision in multiscale linear programming
applications in biology. [...]

How Slow is Quadruple Precision? 2/26

Plan of the Talk

the IEEE-754 binary128 format
a toy example: the double pendulum
can we do better?
conclusion and perspectives

How Slow is Quadruple Precision? 3/26

The IEEE-754 Binary128 Format

Encoding:

sign s exponent e significand m
1 bit 15 bits 112 bits

Decoded value (except special numbers):

x = (−1)s · 2e−16383 · (1 + m
2112)

Smallest absolute value: xmin ≈ 6.5 · 10−4966

Largest absolute value: xmax ≈ 5.9 · 104931

Accuracy about 34 decimal digits.

How Slow is Quadruple Precision? 4/26

Hardware and Software Support

Currently, only the IBM Power9 supports binary128 in hardware.

Several compilers/libraries support binary128 in software:

GNU libc/libquadmath (_Float128);
Intel Math library (_Quad);
Berkeley’s SoftFloat by John Hauser;
Oracle Studio;
ASquadmath by Alexei Sibidanov (not publicly available).

How Slow is Quadruple Precision? 5/26

Example: the Double Pendulum

θ1 (θ2): angle of the 1st (2nd)
pendulum wrt the vertical axis

u = θ′2
2`2 + θ′1

2`1 cos(θ1 − θ2)
v = g(2m1 + m2) sin θ1

w = m2g sin(θ1 − 2θ2)

x = θ′1
2`1(m1 + m2)

y = g(m1 + m2) cos θ1

z = θ′2
2`2m2 cos(θ1 − θ2)

d = 2m1 + m2 −m2 cos(2θ1 − 2θ2)

θ′′1 = −v−w−2 sin(θ1−θ2)m2u
`1d

θ′′2 = 2 sin(θ1−θ2)(x+y+z)
`2d

How Slow is Quadruple Precision? 6/26

Testing Framework
Pendulum lengths: `1 = `2 = 1.
Masses: m1 = m2 = 2.
Acceleration due to gravity: g = 9.81.
Initial conditions: θ1(0) = θ2(0) = π/2, with θ′1(0) = θ′2(0) = 0.
Integration time: 20 seconds.
Method: Euler’s scheme, with 50 000 steps per second
(h = 1/50000):

θ′i(t + h) = θ′i(t) + hθ′′i (t)
θi(t + h) = θi(t) + hθ′i(t)

Source code:
http://www.loria.fr/~zimmerma/double_pendulum.html

How Slow is Quadruple Precision? 7/26

http://www.loria.fr/~zimmerma/double_pendulum.html

Performance Comparison

miriel038.plafrim.cluster: Intel Xeon E5-2680, 2.50GHz
Ratio to the reference time of glibc/double (220ms):

gcc 9.2.0 icc 19.0.4.243
glibc 2.17 gcc version 9.2.0 compat.

single 0.5 0.4 [1]
double 1 0.5

quadruple 62 [2] 10 [3]

[1] results differ with optimization level 0 (x2 = −0.654694,
y2 = 0.631660), level 1 (x2 = −1.343469, y2 = 0.625392), and
levels 2 or 3 (x2 = −1.182620, y2 = 0.601759)
[2] time extrapolated on another machine
[3] compiled with -Qoption,cpp,–extended_float_types

How Slow is Quadruple Precision? 8/26

What About Accuracy?
Tested with mpcheck (mpcheck.gforge.inria.fr) based on
GNU MPFR. 106 random tests. Rounding to nearest. Error in ulps.

function glibc 2.31 icc 19.0.4.243
exp 0.501 0.501
log 0.871 0.501
log2 2.14 0.501
log10 1.43 0.501
sin 1.27 0.501
atan 1.09 0.501
acos 1.13 0.501
sinh 1.83 0.501
tanh 2.30 0.501
acosh 3.24 0.501

tgamma 4.70 4090 [1]

[1] bug reported, for x = 0x3.08e1f38ddd769117414bf11b45dcp+8
How Slow is Quadruple Precision? 9/26

mpcheck.gforge.inria.fr

If we replace all calls to sinf128 by the following (same for
cosf128):

static _Float128 my_sinf128 (_Float128 x)
{
return (_Float128) 0.5;

}

the total time is divided by 18.1 with glibc, by 7.1 with the Intel
Math Library.

Conclusion: the main bottleneck are the mathematical functions.

How Slow is Quadruple Precision? 10/26

Can We Do Better?

On our double pendulum example, quadruple precision is 20 times
slower than double precision with the Intel Math Library, and 62
times with the GNU library.

Can we do better?

Challenge: implement a fast exp function in quadruple precision.

Target processor: x86_64.

How Slow is Quadruple Precision? 11/26

Exercise: Implement expf128 for x86_64

The GNU libm takes on average about 3200 cycles.

The Intel Math Library takes on average 280-430 cycles.

Goal: save a factor of 10 over the GNU libm.

Everything is allowed.

Accuracy constraint: should be about as accurate as the glibc
function.

Time constraint: at most one week of design/coding/testing
(March 23-27, 2020).

How Slow is Quadruple Precision? 12/26

Principle 1: avoid all operations on _Float128, even addition and
multiplication.

Instead, extract the _Float128 input into a special binary128
structure, do all computations on binary128, and unpack at the
end.

How Slow is Quadruple Precision? 13/26

The binary128 structure

Encoding:

sign s exponent e m0 m1
int int uint64_t uint64_t

s ∈ {−1, 1} −16493 ≤ e ≤ 16383 m0 < 264 m1 < 264

Decoding:
x = s · 2e ·

(m1
264 + m0

2128

)
Encoding similar to GNU MPFR, with no implicit bit.

No systematic normalization (m1 can be smaller than 263).

Corollary: we get 128− 113 = 15 extra bits of accuracy.

How Slow is Quadruple Precision? 14/26

Algorithm for binary128 exponential

1. extract x into a binary128 structure, say y
2. check for special values, overflow, underflow
3. write y = i log 2 + j log 2 · 2−8 + k log 2 · 2−16 + r with
−128 ≤ j , k < 128 and |r | ≤ log 2 · 2−17

4. y ← y − i log 2
5. y ← y − uj − vk uj ≈ j log 2 · 2−8, vk ≈ k log 2 · 2−16

6. ejk ← fj · gk fj ≈ exp(uj), gk ≈ exp(vk)
7. now |y | ≤ log 2 · 2−17

8. z ← y(p4 + y(p5y + p6)) [64-bit arithmetic only]
9. z ← p1 + y(p2 + y(p3 + z))
10. y ← ejk + y · z · ejk

11. return unpack(y , i) [multiplies by 2i]

How Slow is Quadruple Precision? 15/26

The coefficients p1, p2, ..., p6 were generated by the Sollya tool.

p(x) = 1 + p1x + p2x2 + · · ·+ p6x6

They minimize the relative error of p(x)− exp x for
|x | ≤ log 2 · 2−17, with the following constraints:
p1, p2, p3 fit on 128 bits
p4, p5, p6 fit on 64 bits

p1 = 0x1.000000000000000000000000000000ap+0
p2 = 0x8.0000000000000000000000006af3f78p-4
p3 = 0x2.aaaaaaaaaaaaaaaaaaa80cd5b9d88f6p-4
p4 = 0xa.aaaaaaaaaaaaaap-8
p5 = 0x2.2222222224dce8p-8
p6 = 0x5.b05b43776501cp-12

Relative error < 2−121.33 (not counting rounding errors).
How Slow is Quadruple Precision? 16/26

Generic binary128 Routines

[a, b, c stand for binary128 structures, m stands for some
m1 · 2−64 + m0 · 2−128 with m1,m0 < 264]
extract_binary128: extract a _Float128 into binary128

unpack: unpack a binary128 into a _Float128

normalize: shift m1,m0 and adjust e so that 263 ≤ m1 < 264

align_binary128: shift m so that e = 0 (assumes e ≤ 0 initially)
sub_inplace: a← a − c, assuming ea = ec

add_inplace: a← a + c
mul: a← high(b · c)
addu: a← b + m · 2eb , assuming no carry
shift_right, shift_left: shift ma by k bits and update ea

How Slow is Quadruple Precision? 17/26

Specific Routines

reduce: a← a − i log 2, i integer, log 2 precomputed on 192 bits

How Slow is Quadruple Precision? 18/26

Accuracy of binary128 exp

Test done by Alexei Sibidanov, on 105 random inputs in [−10, 10].

Correctly rounded results:

Oracle Intel Math libquadmath ASquadmath Paul’s exp
Studio 12.6 19.0.5.281 9.2.1

99615 99997 99999 99999 99951

All other results are wrong by one ulp.

How Slow is Quadruple Precision? 19/26

Performance of binary128 exp

Test done by Alexei Sibidanov, on an AMD Ryzen 5 2400G.

Average number of cycles (measured with perf stat):

MPFR Oracle Studio Intel Math libquad- ASquad- Paul’s
4.0.2 12.6 19.0.5.281 math 9.2.1 math exp
6213 7634 427 3142 181 234

Goal of saving a factor of 10 over the GNU libm is reached!

How Slow is Quadruple Precision? 20/26

2
10

3
10

4
10

CPU clock cycles per function call (Less is better)

Paul’s exp v2 @ R52400G 234

Paul’s exp v2 @ i78750H 212

Paul’s exp @ R52400G 211

Paul’s exp @ i78750H 198

ASquadmath @ R52400G 181

ASquadmath @ i78750H 155

Intel ICC 19.0.5.281 @ R52400G 427

Intel ICC 19.0.5.281 @ i78750H 277

GNU libquadmath 9.2.1 @ R52400G 3142

GNU libquadmath 9.2.1 @ i78750H 3156

Oracle Studio 12.6 @ R52400G 7634

Oracle Studio 12.6 @ i78750H 5653

MPFR 4.0.2 @ R52400G 6213

MPFR 4.0.2 @ i78750H 5814

Performance of exp function

[credit Alexei Sibidanov]

How Slow is Quadruple Precision? 21/26

Conclusion

Quadruple precision is indeed slow, but we can do much better!

We saved a factor of 10 with little effort, probably we can save
another factor of 2 with more effort.

Use of integer operations is the key for efficiency.

The generic binary128 routines can be reused for other functions.

How Slow is Quadruple Precision? 22/26

Perspectives

Implement addition, subtraction, multiplication, division directly
with correct rounding for the binary128 type, to avoid converting
to/from _Float128.

Design an exponential function with correct rounding. The slow
path would use similar integer-only arithmetic, with four 64-bit
words (256 bits of accuracy), assuming the hard-to-round cases are
known.

How Slow is Quadruple Precision? 23/26

The libm detector

https://homepages.loria.fr/PZimmermann/libm-detector/

$ gcc libm-detector.c -lm
$./a.out
Mathematical Library Detector, version 1.0
Probably libm shipped with GNU libc, version >= 2.29

$ icc libm-detector.c
$./a.out
Mathematical Library Detector, version 1.0
Probably Intel Math Library

How Slow is Quadruple Precision? 24/26

https://homepages.loria.fr/PZimmermann/libm-detector/

Afterthoughts

Performance is nice.

What about reproducibility (cf. David Bailey’s talk)?

Currently developers/users mostly care about efficiency.

Shouldn’t we instead seek for bit-to-bit reproducibility, and then
only for performance?

IEEE 754 only recommends correct rounding for math functions.
Should it require correct rouding?

Maybe we get some answer in Jason Riedy’s talk Potential
Directions for Moving IEEE-754 Forward at 3:45pm.

How Slow is Quadruple Precision? 25/26

References

Sollya: an environment for the development of numerical codes,
Sylvain Chevillard, Mioara Maria Joldes and Christoph Lauter,
Third International Congress on Mathematical Software (ICMS),
LNCS 6327, 2010.

A new quadruple precision math library, Alexei Sibidanov, 50
pages, personal communication, February 2020.

Source code for expf128 available here:

https://homepages.loria.fr/PZimmermann/glibc-contrib/

How Slow is Quadruple Precision? 26/26

https://homepages.loria.fr/PZimmermann/glibc-contrib/

