From unitary dynamics to statistical mechanics in isolated quantum systems

Marcos Rigol

Department of Physics
The Pennsylvania State University

The Tony and Pat Houghton Conference on Non-Equilibrium Statistical Mechanics
ICERM, Brown University
May 4, 2015
Outline

1. **Introduction**
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2. **Generic (nonintegrable) systems**
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. **Integrable systems**
 - Time evolution
 - Generalized Gibbs ensemble

4. **Summary**
Experiments with ultracold gases in 1D

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

\[U_{1D}(x) = g_{1D} \delta(x) \]

where

\[g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m \omega_\perp}{2\hbar}}} \]
Experiments with ultracold gases in 1D

Effective one-dimensional δ potential
M. Olshanii, PRL 81, 938 (1998).

$$U_{1D}(x) = g_{1D} \delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m \omega_\perp}{2\hbar}}}$$

Girardeau '60, Lieb and Liniger '63

T. Kinoshita, T. Wenger, and D. S. Weiss,

T. Kinoshita, T. Wenger, and D. S. Weiss,

$$\gamma_{\text{eff}} = \frac{mg_{1D}}{\hbar^2 \rho}$$
Absence of thermalization in 1D?

Absence of thermalization in 1D?

Absence of thermalization in 1D?

Experiment

Theory

Marcos Rigol (Penn State)
Dynamics in quantum systems
May 4, 2015
Absence of thermalization in 1D?

\[\gamma = \frac{mg_{1D}}{\hbar^2 \rho} \]

\(g_{1D} \): Interaction strength
\(\rho \): One-dimensional density

If \(\gamma \gg 1 \) the system is in the strongly correlated Tonks-Girardeau regime

If \(\gamma \ll 1 \) the system is in the weakly interacting regime

1 Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2 Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3 Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4 Summary
Exact results from quantum mechanics

If the initial state is not an eigenstate of \hat{H}

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \hat{H}|\alpha\rangle = E_\alpha|\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \hat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \hat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i\hat{H}\tau} |\psi_0\rangle.$$
Exact results from quantum mechanics

If the initial state is not an eigenstate of \hat{H}

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \hat{H}|\alpha\rangle = E_\alpha|\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \hat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \hat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i\hat{H}_\tau} |\psi_0\rangle.$$

What is it that we call thermalization?

$$\overline{O(\tau)} = O(E_0) = O(T) = O(T, \mu).$$
Exact results from quantum mechanics

If the initial state is not an eigenstate of \hat{H}

$$|\psi_0\rangle \neq |\alpha\rangle \quad \text{where} \quad \hat{H}|\alpha\rangle = E_\alpha|\alpha\rangle \quad \text{and} \quad E_0 = \langle \psi_0 | \hat{H} | \psi_0 \rangle,$$

then a generic observable O will evolve in time following

$$O(\tau) \equiv \langle \psi(\tau) | \hat{O} | \psi(\tau) \rangle \quad \text{where} \quad |\psi(\tau)\rangle = e^{-i\hat{H}\tau}|\psi_0\rangle.$$

What is it that we call thermalization?

$$\overline{O(\tau)} = O(E_0) = O(T) = O(T, \mu).$$

One can rewrite

$$O(\tau) = \sum_{\alpha', \alpha} C_{\alpha'}^\ast C_\alpha e^{i(E_{\alpha'} - E_\alpha)\tau} O_{\alpha' \alpha} \quad \text{where} \quad |\psi_0\rangle = \sum_\alpha C_\alpha |\alpha\rangle,$$

Taking the infinite time average (diagonal ensemble $\hat{\rho}_{DE} \equiv \sum_\alpha |C_\alpha|^2 |\alpha\rangle \langle \alpha|$

$$\overline{O(\tau)} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau d\tau' \langle \Psi(\tau') | \hat{O} | \Psi(\tau') \rangle = \sum_\alpha |C_\alpha|^2 O_{\alpha \alpha} \equiv \langle \hat{O} \rangle_{\text{diag}},$$

which depends on the initial conditions through $C_\alpha = \langle \alpha | \psi_0 \rangle$.
Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum \alpha C_\alpha |\alpha\rangle$ is an eigenstate of \hat{H}_0. At $\tau = 0$

$$\hat{H}_0 \rightarrow \hat{H} = \hat{H}_0 + \hat{W} \quad \text{with} \quad \hat{W} = \sum_j \hat{w}(j) \quad \text{and} \quad \hat{H}|\alpha\rangle = E_\alpha |\alpha\rangle.$$
Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum_\alpha C_\alpha |\alpha\rangle$ is an eigenstate of \hat{H}_0. At $\tau = 0$

$$\hat{H}_0 \rightarrow \hat{H} = \hat{H}_0 + \hat{W} \quad \text{with} \quad \hat{W} = \sum_j \hat{w}(j) \quad \text{and} \quad \hat{H}|\alpha\rangle = E_\alpha |\alpha\rangle.$$

The width of the weighted energy density ΔE is then

$$\Delta E = \sqrt{\sum_\alpha E_\alpha^2 |C_\alpha|^2 - (\sum_\alpha E_\alpha |C_\alpha|^2)^2} = \sqrt{\langle \psi_0 | \hat{W}^2 | \psi_0 \rangle - \langle \psi_0 | \hat{W} | \psi_0 \rangle^2},$$

or

$$\Delta E = \sqrt{\sum_{j_1,j_2 \in \sigma} \left[\langle \psi_0 | \hat{w}(j_1) \hat{w}(j_2) | \psi_0 \rangle - \langle \psi_0 | \hat{w}(j_1) | \psi_0 \rangle \langle \psi_0 | \hat{w}(j_2) | \psi_0 \rangle \right]} \xrightarrow{N \rightarrow \infty} \sqrt{N},$$

where N is the total number of lattice sites.

Width of the energy density after a sudden quench

Initial state $|\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle$ is an eigenstate of \hat{H}_0. At $\tau = 0$

$$\hat{H}_0 \rightarrow \hat{H} = \hat{H}_0 + \hat{W}, \quad \text{with} \quad \hat{W} = \sum_{j} \hat{w}(j) \quad \text{and} \quad \hat{H}|\alpha\rangle = E_{\alpha}|\alpha\rangle.$$

The width of the weighted energy density ΔE is then

$$\Delta E = \sqrt{\sum_{\alpha} E_{\alpha}^2 |C_{\alpha}|^2 - \left(\sum_{\alpha} E_{\alpha} |C_{\alpha}|^2 \right)^2} = \sqrt{\langle \psi_0 | \hat{W}^2 |\psi_0\rangle - \langle \psi_0 | \hat{W} |\psi_0\rangle^2},$$

or

$$\Delta E = \sqrt{\sum_{j_1,j_2 \in \sigma} \left[\langle \psi_0 | \hat{w}(j_1) \hat{w}(j_2) |\psi_0\rangle - \langle \psi_0 | \hat{w}(j_1) |\psi_0\rangle \langle \psi_0 | \hat{w}(j_2) |\psi_0\rangle \right]} \xrightarrow{N \rightarrow \infty} \sqrt{\frac{1}{N}},$$

where N is the total number of lattice sites.

Since the width W of the full energy spectrum is $\propto N$

$$\Delta \epsilon = \frac{\Delta E}{W} \xrightarrow{N \rightarrow \infty} \frac{1}{\sqrt{N}},$$

so, as in any thermal ensemble, $\Delta \epsilon$ vanishes in the thermodynamic limit.

1 Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2 Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3 Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4 Summary
Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[
\hat{H} = -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0
\]

Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[\hat{H} = -J \sum_{\langle i, j \rangle} (\hat{b}_i^\dagger \hat{b}_j + \text{H.c.}) + U \sum_{\langle i, j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger \hat{b}_i = \hat{b}_i^2 = 0 \]

Nonequilibrium dynamics in 2D

Weak n.n. \(U = 0.1J \)

\(N_b = 5 \) bosons

\(N = 21 \) lattice sites

Hilbert space: \(D = 20349 \)

All states are used!
Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[
\hat{H} = -J \sum_{\langle i,j \rangle} (\hat{b}_i^\dagger \hat{b}_j + \text{H.c.}) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger \hat{b}_i^2 = \hat{b}_i^2 = 0
\]

“One can rewrite

\[
O(\tau) = \sum_{\alpha', \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})\tau} O_{\alpha' \alpha} \quad \text{where} \quad |\psi_0\rangle = \sum_{\alpha} C_{\alpha} |\alpha\rangle,
\]

and taking the infinite time average (diagonal ensemble)

\[
\overline{O(\tau)} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau d\tau' \langle \Psi(\tau') | \hat{O} | \Psi(\tau') \rangle = \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha \alpha} \equiv \langle \hat{O} \rangle_{\text{diag}},
\]

which depends on the initial conditions through \(C_{\alpha} = \langle \alpha | \psi_0 \rangle \).”
Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[\hat{H} = -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0 \]

Nonequilibrium dynamics in 2D

Weak n.n. \(U = 0.1J \)

\(N_b = 5 \) bosons

\(N = 21 \) lattice sites

Hilbert space: \(D = 20349 \)

All states are used!
Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[\hat{H} = -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0 \]

Nonequilibrium dynamics in 2D

Weak n.n. \(U = 0.1J \)
\(N_b = 5 \) bosons
\(N = 21 \) lattice sites
Hilbert space: \(D = 20349 \)
All states are used!
1. Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2. Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4. Summary
Statistical description after relaxation

Canonical calculation

\[O = \text{Tr} \left\{ \hat{O} \hat{\rho} \right\} \]
\[\hat{\rho} = Z^{-1} \exp \left(-\hat{H} / k_B T \right) \]
\[Z = \text{Tr} \left\{ \exp \left(-\hat{H} / k_B T \right) \right\} \]
\[E_0 = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\} \quad T = 1.9 J \]
Statistical description after relaxation

Canonical calculation

\[
O = \text{Tr} \left\{ \hat{O} \hat{\rho} \right\}
\]
\[
\hat{\rho} = Z^{-1} \exp \left(-\hat{H} / k_B T \right)
\]
\[
Z = \text{Tr} \left\{ \exp \left(-\hat{H} / k_B T \right) \right\}
\]
\[
E_0 = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\} \quad T = 1.9J
\]

Microcanonical calculation

\[
O = \frac{1}{N_{\text{states}}} \sum_{\alpha} \langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle
\]

with \(E_0 - \Delta E < E_\alpha < E_0 + \Delta E \)

\(N_{\text{states}} \) : # of states in the window
1. Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2. Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4. Summary
Eigenstate thermalization hypothesis

Paradox?

\[
\sum_{\alpha} |C_{\alpha}|^2 O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_{\alpha}| < \Delta E} O_{\alpha\alpha}
\]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)

Right hand side: Depends only on the initial energy
Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_\alpha|^2 O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_\alpha|<\Delta E} O_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_\alpha = \langle \Psi_\alpha | \psi_I \rangle \)

Right hand side: Depends only on the initial energy

i) For physically relevant initial conditions, \(|C_\alpha|^2 \) practically do not fluctuate.

ii) Large (and uncorrelated) fluctuations occur in both \(O_{\alpha\alpha} \) and \(|C_\alpha|^2 \). A physically relevant initial state performs an unbiased sampling of \(O_{\alpha\alpha} \).

Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_{\alpha}|^2 O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0-E_{\alpha}|<\Delta E} O_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)

Right hand side: Depends only on the initial energy

MR, PRA 82, 037601 (2010).
Eigenstate thermalization hypothesis

Paradox?

\[
\sum_\alpha |C_\alpha|^2 O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum\limits_{|E_0 - E_\alpha| < \Delta E} O_{\alpha\alpha}
\]

Left hand side: Depends on the initial conditions through \(C_\alpha = \langle \Psi_\alpha | \psi_I \rangle \)

Right hand side: Depends only on the initial energy

i) For physically relevant initial conditions, \(|C_\alpha|^2\) practically do not fluctuate.

ii) Large (and uncorrelated) fluctuations occur in both \(O_{\alpha\alpha} \) and \(|C_\alpha|^2\). A physically relevant initial state performs an unbiased sampling of \(O_{\alpha\alpha} \).

Eigenstate thermalization hypothesis

Paradox?

\[\sum_{\alpha} |C_{\alpha}|^2 O_{\alpha\alpha} = \langle O \rangle_{\text{microcan.}}(E_0) \equiv \frac{1}{N_{E_0,\Delta E}} \sum_{|E_0 - E_\alpha| < \Delta E} O_{\alpha\alpha} \]

Left hand side: Depends on the initial conditions through \(C_{\alpha} = \langle \Psi_{\alpha} | \psi_I \rangle \)
Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (ETH)
[J. M. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994);
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).]

iii) The expectation value \(\langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle \) of a few-body observable \(\hat{O} \) in an eigenstate of the Hamiltonian \(|\Psi_{\alpha}\rangle \), with energy \(E_\alpha \), of a large interacting many-body system equals the thermal average of \(\hat{O} \) at the mean energy \(E_\alpha \):

\[\langle \Psi_{\alpha} | \hat{O} | \Psi_{\alpha} \rangle = \langle O \rangle_{\text{microcan.}}(E_\alpha) \]
Eigenstate thermalization hypothesis

Momentum distribution

Eigenstates $a - d$ are the ones with energies closest to E_0
Momentum distribution

Eigenstates \(a - d \) are the ones with energies closest to \(E_0 \)

\[
n(k_x = 0) \text{ vs energy}
\]

\[
\rho(E) = P(E) \times \text{dens. stat.}
\]

\[
P(E)_{\text{exact}} \rightarrow |C_\alpha|^2
\]

\[
P(E)_{\text{mic}} \rightarrow \text{constant}
\]

\[
P(E)_{\text{can}} \rightarrow \exp\left(-\frac{E}{k_B T}\right)
\]
One-dimensional integrable case

Similar experiment in one dimension

Initial

8 sites

13 sites
One-dimensional integrable case

Similar experiment in one dimension

Initial

8 sites

13 sites

No thermalization!
Momentum distribution

Eigenstates $a - d$ are the ones with energies closest to E_0
Outline

1. Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2. Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4. Summary
Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

\[\hat{H} = -J \sum_{\langle i,j \rangle} \left(\hat{b}_i^\dagger \hat{b}_j + \text{H.c.} \right) + U \sum_{\langle i,j \rangle} \hat{n}_i \hat{n}_j, \quad \hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0 \]

Nonequilibrium dynamics in 2D

Weak n.n. \(U = 0.1J \)

\(N_b = 5 \) bosons

\(N = 21 \) lattice sites

Hilbert space: \(D = 20349 \)

All states are used!
Time fluctuations

Are they small because of dephasing?

$$\langle \hat{O}(t) \rangle - \langle \hat{O}(t) \rangle = \sum_{\alpha', \alpha \atop \alpha' \neq \alpha} C^{\ast}_{\alpha'} C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha' \alpha} \sim \sum_{\alpha', \alpha \atop \alpha' \neq \alpha} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha' \alpha}$$

$$\sim \sqrt{N_{\text{states}}^2} O_{\text{typical}} \sim O_{\text{typical}}$$

Time fluctuations

Are they small because of dephasing?

\[\langle \hat{O}(t) \rangle - \langle \hat{O}(t) \rangle = \sum_{\alpha', \alpha} C_{\alpha, \alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha' \alpha} \sim \sum_{\alpha', \alpha} e^{i(E_{\alpha'} - E_{\alpha})t} \frac{1}{N_{\text{states}}} O_{\alpha' \alpha} \]

\[\sim \sqrt{\frac{N_{\text{states}}^2}{N_{\text{states}}} O_{\alpha' \alpha}} \sim O_{\alpha' \alpha}^{\text{typical}} \]

Time average of \(\langle \hat{O} \rangle \)

\[\langle \hat{O} \rangle = \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha \alpha} \]

\[\sim \sum_{\alpha} \frac{1}{N_{\text{states}}} O_{\alpha \alpha} \sim O_{\alpha' \alpha}^{\text{typical}} \]

One needs: \(O_{\alpha' \alpha}^{\text{typical}} \ll O_{\alpha \alpha}^{\text{typical}} \)
Time fluctuations

Are they small because of dephasing?

\[
\langle \hat{O}(t) \rangle - \langle \hat{O}(t) \rangle = \sum_{\alpha', \alpha \neq \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha}) t} O_{\alpha' \alpha} \sim \sum_{\alpha', \alpha \neq \alpha} e^{i(E_{\alpha'} - E_{\alpha}) t} \frac{O_{\alpha' \alpha}}{N_{\text{states}}} \]

\[
\sim \frac{\sqrt{N_{\text{states}}^2}}{N_{\text{states}}} O^{\text{typical}}_{\alpha' \alpha} \sim O^{\text{typical}}_{\alpha' \alpha}
\]

Time average of \(\langle \hat{O} \rangle \)

\[
\langle \hat{O} \rangle = \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha \alpha}
\]

\[
\sim \sum_{\alpha} \frac{1}{N_{\text{states}}} O_{\alpha \alpha} \sim O^{\text{typical}}_{\alpha \alpha}
\]

One needs: \(O^{\text{typical}}_{\alpha' \alpha} \ll O^{\text{typical}}_{\alpha \alpha} \)
Time fluctuations

Are they small because of dephasing?

\[
\langle \hat{O}(t) \rangle - \langle \hat{O}(t) \rangle = \sum_{\alpha', \alpha \neq \alpha} C_{\alpha'}^* C_{\alpha} e^{i(E_{\alpha'} - E_{\alpha})t} O_{\alpha' \alpha} \sim \sum_{\alpha', \alpha \neq \alpha} \frac{e^{i(E_{\alpha'} - E_{\alpha})t}}{N_{\text{states}}} O_{\alpha' \alpha}
\]

\[
\sim \frac{\sqrt{N_{\text{states}}^2}}{N_{\text{states}}} O_{\alpha' \alpha} \sim O_{\alpha' \alpha}^{\text{typical}}
\]

Time average of \(\langle \hat{O} \rangle \)

\[
\langle \hat{O} \rangle = \sum_{\alpha} |C_{\alpha}|^2 O_{\alpha \alpha} \sim \sum_{\alpha} \frac{1}{N_{\text{states}}} O_{\alpha \alpha} \sim O_{\alpha \alpha}^{\text{typical}}
\]

One needs: \(O_{\alpha' \alpha}^{\text{typical}} \ll O_{\alpha \alpha}^{\text{typical}} \)

Outline

1. Introduction
 - Experiments with ultracold gases
 - Unitary evolution and thermalization

2. Generic (nonintegrable) systems
 - Time evolution vs exact time average
 - Statistical description after relaxation
 - Eigenstate thermalization hypothesis
 - Time fluctuations

3. Integrable systems
 - Time evolution
 - Generalized Gibbs ensemble

4. Summary
Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

\[\hat{H} = -J \sum_i \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i, \quad \text{constraints} \quad \hat{b}_i^\dagger^2 = \hat{b}_i^2 = 0 \]
Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

\[\hat{H} = -J \sum_i \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i, \quad \text{constraints} \quad \hat{b}_i^\dagger E = \hat{b}_i^2 = 0 \]

\[\Downarrow \]

Map to spins and then to fermions (Jordan-Wigner transformation)

\[\sigma_i^+ = f_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_\beta^\dagger \hat{f}_\beta}, \quad \sigma_i^- = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} f_i \]
Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

\[\hat{H} = -J \sum_i \left(\hat{b}_i^\dagger \hat{b}_{i+1} + \text{H.c.} \right) + \sum_i v_i \hat{n}_i, \quad \text{constraints} \quad \hat{b}_i^\dagger \hat{b}_i = \hat{b}_i^2 = 0 \]

Map to spins and then to fermions (Jordan-Wigner transformation)

\[\sigma_+^i = \hat{f}_i^\dagger \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_\beta^\dagger \hat{f}_\beta}, \quad \sigma_-^i = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i \]

Exact Green’s function

\[G_{ij}(\tau) = \det \left[(P^l(\tau))^\dagger P^r(\tau) \right] \]

Computation time \(\sim L^2 N^3 \)

3000 lattice sites, 300 particles

Relaxation dynamics in an integrable system

Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).
Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).
Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad N_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).

Integrals of motion

(underlying noninteracting fermions)

\[\hat{H}_F \hat{\gamma}_m^{f \dagger} |0\rangle = E_m \hat{\gamma}_m^{f \dagger} |0\rangle \]

\[\left\{ \hat{I}_m^f \right\} = \left\{ \hat{\gamma}_m^{f \dagger} \hat{\gamma}_m^f \right\} \]
Statistical description after relaxation

Thermal equilibrium

\[\hat{\rho} = Z^{-1} \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \]

\[Z = \text{Tr} \left\{ \exp \left[- \left(\hat{H} - \mu \hat{N}_b \right) / k_B T \right] \right\} \]

\[E = \text{Tr} \left\{ \hat{H} \hat{\rho} \right\}, \quad \hat{N}_b = \text{Tr} \left\{ \hat{N}_b \hat{\rho} \right\} \]

MR, PRA 72, 063607 (2005).

Generalized Gibbs ensemble

\[\hat{\rho}_c = Z_c^{-1} \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \]

\[Z_c = \text{Tr} \left\{ \exp \left[- \sum_m \lambda_m \hat{I}_m \right] \right\} \]

\[\langle \hat{I}_m \rangle_{\tau=0} = \text{Tr} \left\{ \hat{I}_m \hat{\rho}_c \right\} \]
Summary

- Thermalization occurs in generic isolated systems
 - ★ Finite size effects

Eigenstate thermalization hypothesis

\[\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle \text{ microcan.} \]

Small time fluctuations \leftarrow smallness of off-diagonal elements

Time plays only an auxiliary role

Integrable systems are different

(Generalized Gibbs ensemble)

Thermalization and ETH break down close integrability (finite system)

★ Quantum equivalent of KAM?
Summary

- Thermalization occurs in generic isolated systems
 - Finite size effects

- Eigenstate thermalization hypothesis
 - $\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle_{\text{microcan.}}(E_\alpha)$
Summary

- Thermalization occurs in generic isolated systems
 - Finite size effects
- Eigenstate thermalization hypothesis
 - \(\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle_{\text{microcan.}} (E_\alpha) \)
- Small time fluctuations \(\leftarrow \) smallness of off-diagonal elements
Summary

- Thermalization occurs in generic isolated systems
 - Finite size effects

- Eigenstate thermalization hypothesis
 - \[\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle_{\text{microcan.}} (E_\alpha) \]

- Small time fluctuations \(\leftrightarrow \) smallness of off-diagonal elements

- Time plays only an auxiliary role
Summary

- Thermalization occurs in generic isolated systems
 - ★ Finite size effects

- Eigenstate thermalization hypothesis
 - ★ \(\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle_{\text{microcan.}} (E_\alpha) \)

- Small time fluctuations \(\leftrightarrow \) smallness of off-diagonal elements

- Time plays only an auxiliary role

- Integrable systems are different (Generalized Gibbs ensemble)
Summary

- Thermalization occurs in generic isolated systems
 - Finite size effects

- Eigenstate thermalization hypothesis
 - \(\langle \Psi_\alpha | \hat{O} | \Psi_\alpha \rangle = \langle O \rangle_{\text{microcan.}} (E_\alpha) \)

- Small time fluctuations ↔ smallness of off-diagonal elements

- Time plays only an auxiliary role

- Integrable systems are different (Generalized Gibbs ensemble)

- Thermalization and ETH break down close integrability (finite system)
 - Quantum equivalent of KAM?
Collaborators

- Vanja Dunjko (U Mass Boston)
- Alejandro Muramatsu (Stuttgart U)
- Maxim Olshanii (U Mass Boston)
- Anatoli Polkovnikov (Boston U)
- Lea F. Santos (Yeshiva U)
- Mark Srednicki (UC Santa Barbara)
- Current group members: Deepak Iyer, Baoming Tang
- Former group members: Kai He (NOAA), Ehsan Khatami (SJSU)

Supported by:
Information entropy \(S_j = - \sum_{k=1}^{D} |c_j^k|^2 \ln |c_j^k|^2 \)

L.F. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).