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Nonnegative Sparse Recovery
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Motivation from Metagenomics

» x € RN (N = 273,727): concentrations of known bacteria in
a given environmental sample. Sparsity assumption is realistic.
Note also that x > 0 and >, x; = L.

y € R™ (m = 4% = 4,096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

v

v

A € R™*N: frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria. It is a frequency matrix, that is,

A,"j > 0 and Z:,'llAiJ =1.

v

Quikr improves on traditional read-by-read methods,
especially in terms of speed.

Codes available at
sourceforge.net/projects/quikr/
sourceforge.net/projects/wgsquikr/

v
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> x is the unique minimizer of ||z||; s.to Az =y and z > 0 iff
(NNBP) forallvekerA\ {0}, ve>0= " v,>0.
> x is the unique z > 0 s.to Az =y iff
(F) for all v € ker A\ {0}, vz > 0isimpossible.

In general, (F)=(NNBP) and (BP)=>(NNBP). If 1 € im(AT)
(e.g. if Ais a frequency matrix), then (NNBP)=-(F)=-(BP).

Morale: £1-minimization not suited for nonnegative sparse recovery.
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Nonnegative Least Squares

v

To solve the feasibility problem, one may consider

minimize ||y — Az||3  subject to z>0.
zeRN

v

MATLAB's Isqnonneg implements [Lawson—Hanson 74].

v

This algorithm iterates the scheme
sl =gy {j"+1 = argmax j(A*(y — Ax”))j},

1 = argmin {|ly — Az||>, supp(z) C S"*!},

Xn

and inner loop to make sure that x"1 > 0.

v

Connection with OMP explains suitability for sparse recovery.
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Inaccurate Measurements

» When y = Ax + e with e # 0, a classical strategy consists in
solving the /1-regularization

minimize ||z||; + v|ly — Az||3 subject to z > 0.
zeRN
» We prefer the /1-squared regularization
minimize ||z||2 + A\?|ly — Az||3 subject to z >0,
zeRN
because it is recast as the Nonnegative Least Squares problem

mlnllee Iy — Az|3 subject to z >0,

whereA—{—}andy—H

» For frequency matrices, as A — oo, the minimizer x) tends to
the minimizer of ||z||; subject to Az=1y and z > 0.
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Extension: Sparse Recovery via NNLS

» Decompose vectorsz € RV asz=2z, —z_ withz,,z_ ¢ R_’ﬁ.

» The ¢1-squared regularization
(REG) minimize 2|7 + \?|ly — Az||3
is recast as the Nonnegative Least Squares problem
minimize ||y — AZ||? subject to Z > 0,

(O] 4 [t o L[ 1 o 1] [a]

where y = A = Z= )

LA P Kl B VS e V- o P
» For Gaussian matrices (RNSP and QP hold), the solutions x
of (REG) with y = Ax + e obey, for all x € RN and e € R™,

Es
2 [1%[|1-

[x = xxll1 < C o5(x)1 + Dv/s [|ell2 +



Part Il:
Disjointed Sparse Recovery

(joint work with M. Minner and T. Needham)
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Motivation from Radar

v

x € RN: positions of airplanes relative to a discretized grid.

v

Few airplanes that are not too close to one another:
sparsity and disjointedness.

v

Disjointedness is also relevant to model neural spike trains.
[Hedge—Duarte—Cevher 09]
We say that x € RV is s-sparse and d-disjointed if

» x has no more than s nonzero entries,
» there are > d zero entries between two nonzero entries.

v
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Resolution of the Fundamental Question

» The minimal number of linear measurements for the recovery
of all s-sparse vectors is

N
Mgpa < S In e; .

» The minimal number of linear measurements for the recovery
of all d-disjointed vectors is [Candes—Fernandez-Granda 14]

N

rE

» What is the minimal number of linear measurements needed
for the recovery of all s-sparse d-disjointed vectors? Answer:

. N —d(s— 1)) '

S

myjs <

Mgspagdis =< S In (

» There is no benefit in knowing the simultaneity of sparsity and
disjointedness over knowing only one of the structures, since

Mgpagdis = min {mspaa mdis} .
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(N—d§5—1)> ; <eN—d£s_1)>s

d-disjointed subsets of [1 : N] with size s.

There are

1 >d 2 >d 3 s
—Ar —Hr
0---0OX00---O0X0O0:*O0XQ-+---- O0XO0--0 Length N
insertd
—A—
0---0OX00---0O0XO0:*O0XQ-+---- O0X0---00:--0 Length N+d
d+1 d+1 d+1

O...o|xO...O|...O|xo...o|...o|xO ...... O|xo...o|o...o LengthN+d

0---OM00---OMOO---0O0M0O0-0 Length N-d(s-1)
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» The adaptation of iterative hard thresholding is
x" = Ps.qa(x" + A*(y — Ax")),

where P 4 is the projection onto s-sparse d-disjointed vectors.
» For any s-sparse d-disjointed x € RN and any e € R™,

[x = lim x"[|2 < Dllel|2
n—0o0
as soon as the Rl-like property
(1-0)||z+Z +2"|3 < |A(z+Z +2")|]3 < (146)|z+2 +2"|3

holds with § < 1/2 for all s-sparse d-disjointed z,2’,z"” € RV.
» The latter occurs w/hp for m > C6=2In(e(N — d(s — 1))/s).

» Similar results obtained earlier for the adaptation of CoSaMP.
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» [Hedge-Duarte-Cevher 09] propose an integer program relaxed
to a linear program that is solved in O(N3®) operations.

» A dynamic program can be solved in O(N?) operations.

» Determine F(N,s), where

n
F(n,r) :=min Z |xj — zj|> : 2 € C" r-sparse d-disjointed
j=1
F(n—1,r)+ |xalP,

_ H n—1
= min Fin—d—-1,r=1)+ > |x]".
j=n—d



Computing the Projection P 4, ctd.

Dynamic program for x = (1,0,1,2%/4,1,0,27%/2), s =3, d = 1.

’ X ‘ H F(n,r) H r=0 \rzl\r:2\ r:3‘
1 n=1 1 0., o0, 0
0 n= 1 0o, \ 0, 0
1 n=3 2 Y1 Yo N o
1.1892 n=4 34142, 2 [, 1\ 1
1 n= 4.4142 [, 3 |, 2 [ 1.4142
0 n==06 || 44142 |, 3 |, 2 |1.4142
0.7071 n=7 || 49142 " 35 ["25 [1.9142
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Necessary Number of Measurements

» Noninflating measurements relative to our model:
||Az||2 < cl||z]|]2 whenever z is s-sparse d-disjointed.
» A reconstruction map providing the robust estimate
Ix— A(Ax+e)|2 < Dllell:.
valid for all s-sparse d-disjointed x and for all e.

» Then
eN —d(s— 1))

mZCsIn(
s
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There exist

</v— d(s — 1)>C2S
n>|(———=
c1S

d-disjointed subsets S1,..., S, of [1: N] such that

card(S;) =s for all /, card(5; N §j) < for all i # j.

N »

This extends a crucial result known for d = 0 (sparse vectors),
but the counting argument must be somewhat refined.



