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Part I:

Nonnegative Sparse Recovery

(joint work with D. Koslicki)



Motivation from Metagenomics

I x ∈ RN (N = 273, 727): concentrations of known bacteria in
a given environmental sample.

Sparsity assumption is realistic.
Note also that x ≥ 0 and

∑
j xj = 1.

I y ∈ Rm (m = 46 = 4, 096): frequencies of length-6 subwords
(in 16S rRNA gene reads or in whole-genome shotgun reads)

I A ∈ Rm×N : frequencies of length-6 subwords in all known
(i.e., sequenced) bacteria.

It is a frequency matrix, that is,

Ai ,j ≥ 0 and
∑m

i=1Ai ,j = 1.

I Quikr improves on traditional read-by-read methods,
especially in terms of speed.

I Codes available at
sourceforge.net/projects/quikr/

sourceforge.net/projects/wgsquikr/
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Exact Measurements

Let x ∈ RN be a nonnegative vector with support S .

I x is the unique minimizer of ‖z‖1 s.to Az = y iff

(BP) for all v ∈ kerA \ {0},
∣∣∣∑j∈S vj

∣∣∣ <∑`∈S |v`|.

I x is the unique minimizer of ‖z‖1 s.to Az = y and z ≥ 0 iff

(NNBP) for all v ∈ kerA \ {0}, vS ≥ 0⇒
∑N

i=1 vi > 0.

I x is the unique z ≥ 0 s.to Az = y iff

(F) for all v ∈ kerA \ {0}, vS ≥ 0 is impossible.

In general, (F)⇒(NNBP) and (BP)⇒(NNBP). If 1 ∈ im(A>)
(e.g. if A is a frequency matrix), then (NNBP)⇒(F)⇒(BP).

Morale: `1-minimization not suited for nonnegative sparse recovery.
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Nonnegative Least Squares

I To solve the feasibility problem, one may consider

minimize
z∈RN

‖y − Az‖22 subject to z ≥ 0.

I MATLAB’s lsqnonneg implements [Lawson–Hanson 74].

I This algorithm iterates the scheme

Sn+1 = Sn ∪
{
jn+1 = argmax j

(
A∗(y − Axn)

)
j

}
,

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,

and inner loop to make sure that xn+1 ≥ 0.

I Connection with OMP explains suitability for sparse recovery.
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Inaccurate Measurements

I When y = Ax + e with e 6= 0, a classical strategy consists in
solving the `1-regularization

minimize
z∈RN

‖z‖1 + ν‖y − Az‖22 subject to z ≥ 0.

I We prefer the `1-squared regularization

minimize
z∈RN

‖z‖21 + λ2‖y − Az‖22 subject to z ≥ 0,

because it is recast as the Nonnegative Least Squares problem

minimize
z∈RN

‖ỹ − Ãz‖22 subject to z ≥ 0,

where Ã =

[
1 · · · 1

λA

]
and ỹ =

[
0

λy

]
.

I For frequency matrices, as λ→∞, the minimizer xλ tends to
the minimizer of ‖z‖1 subject to Az = y and z ≥ 0.
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Extension: Sparse Recovery via NNLS

I Decompose vectors z ∈ RN as z = z+− z− with z+, z− ∈ RN
+.

I The `1-squared regularization

(REG) minimize ‖z‖21 + λ2‖y − Az‖22

is recast as the Nonnegative Least Squares problem

minimize ‖ỹ − Ãz̃‖22 subject to z̃ ≥ 0,

where ỹ =

[
0

λy

]
,Ã =

[
1 · · · 1 1 · · · 1

λA −λA

]
,z̃ =

[
z+
z−

]
.

I For Gaussian matrices (RNSP and QP hold), the solutions xλ
of (REG) with y = Ax + e obey, for all x ∈ RN and e ∈ Rm,

‖x− xλ‖1 ≤ C σs(x)1 + D
√
s ‖e‖2 +

E s

λ2
‖x‖1.
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minimize ‖ỹ − Ãz̃‖22 subject to z̃ ≥ 0,

where ỹ =
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Part II:

Disjointed Sparse Recovery

(joint work with M. Minner and T. Needham)



Motivation from Radar

I x ∈ RN : positions of airplanes relative to a discretized grid.

I Few airplanes that are not too close to one another:
sparsity and disjointedness.

I Disjointedness is also relevant to model neural spike trains.
[Hedge–Duarte–Cevher 09]

I We say that x ∈ RN is s-sparse and d-disjointed if

I x has no more than s nonzero entries,
I there are ≥ d zero entries between two nonzero entries.
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Resolution of the Fundamental Question

I The minimal number of linear measurements for the recovery
of all s-sparse vectors is

mspa � s ln

(
e
N

s

)
.

I The minimal number of linear measurements for the recovery
of all d-disjointed vectors is [Candès–Fernandez-Granda 14]

mdis �
N

d
.

I What is the minimal number of linear measurements needed
for the recovery of all s-sparse d-disjointed vectors?

Answer:

mspa&dis � s ln

(
e
N − d(s − 1)

s

)
.

I There is no benefit in knowing the simultaneity of sparsity and
disjointedness over knowing only one of the structures, since

mspa&dis � min {mspa,mdis} .
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Sparse Disjointed Supports

There are (
N − d(s − 1)

s

)
≤
(
e
N − d(s − 1)

s

)s

d-disjointed subsets of J1 : NK with size s.

≥  d1 2 ≥  d 3   s
Length  N  

Length  N+d
d+1 d+1

Length  N-‐d(s-‐1)

insert  d
Length  N+d

d+1
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Sufficient Number of Measurements via IHT

I The adaptation of iterative hard thresholding is

xn+1 = Ps,d(xn + A∗(y − Axn)),

where Ps,d is the projection onto s-sparse d-disjointed vectors.

I For any s-sparse d-disjointed x ∈ RN and any e ∈ Rm,

‖x− lim
n→∞

xn‖2 ≤ D‖e‖2

as soon as the RI-like property

(1−δ)‖z+z′+z′′‖22 ≤ ‖A(z+z′+z′′)‖22 ≤ (1+δ)‖z+z′+z′′‖22

holds with δ < 1/2 for all s-sparse d-disjointed z, z′, z′′ ∈ RN .

I The latter occurs w/hp for m ≥ Cδ−2 ln(e(N − d(s − 1))/s).

I Similar results obtained earlier for the adaptation of CoSaMP.
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Computing the Projection Ps,d

I [Hedge–Duarte–Cevher 09] propose an integer program relaxed
to a linear program that is solved in O(N3.5) operations.

I A dynamic program can be solved in O(N2) operations.

I Determine F (N, s), where

F (n, r) := min


n∑

j=1

|xj − zj |2 : z ∈ Cn r -sparse d-disjointed


= min


F (n − 1, r) + |xn|p,

F (n − d − 1, r − 1) +
n−1∑

j=n−d
|xj |p.
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Computing the Projection Ps,d , ctd.

Dynamic program for x = (1, 0, 1, 21/4, 1, 0, 2−1/2), s = 3, d = 1.

x

1
0
1

1.1892
1
0

0.7071

F (n, r) r = 0 r = 1 r = 2 r = 3

n = 1 1 0 0 0
n = 2 1 0 0 0
n = 3 2 1 0 0
n = 4 3 .4142 2 1 1
n = 5 4 .4142 3 2 1.4142
n = 6 4 .4142 3 2 1.4142
n = 7 4 .9142 3.5 2.5 1.9142



Necessary Number of Measurements

I Noninflating measurements relative to our model:

‖Az‖2 ≤ c‖z‖2 whenever z is s-sparse d-disjointed.

I ∆ reconstruction map providing the robust estimate

‖x−∆(Ax + e)‖2 ≤ D‖e‖2,

valid for all s-sparse d-disjointed x and for all e.

I Then

m ≥ C s ln

(
e
N − d(s − 1)

s

)
.
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Key Combinatorial Lemma

There exist

n ≥
(
N − d(s − 1)

c1s

)c2s

d-disjointed subsets S1, . . . ,Sn of J1 : NK such that

card(Si ) = s for all i , card(Si ∩ Sj) <
s

2
for all i 6= j .

This extends a crucial result known for d = 0 (sparse vectors),
but the counting argument must be somewhat refined.
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