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3. Fréchet differentiability and bilinear operators

4. What remains to be done
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Synthetic Aperture Radar

• Sources (S) and receivers (R) pass over landscape

• Pulses of EM waves emitted by S, reflect off
obstacles, possibly multiple times, are detected by R

•Many data acquisition geometries:

– Monostatic (R = S) or not

– One flight path (2D data) or multiples passes (3D)

– Straight vs. curved, etc.

• Edge/singularity detection:

– Characterization of artifacts

– Removal if possible

– Guidance for filter design if not



Microlocal approach

•Good for finding the locations and orientations of
edges (and other singularities)

•Many geometries have been studied: work of
Cheney, Nolan; Felea; Cheney, Yarman, Yazici;
Ambartsoumian,Felea,Krishnan,Nolan,Quinto; Gaburro

• Based on a single-scatter (Born) approximation,
ignoring multiple reflections

•↔ A formal linearization DF of the nonlinear map
F sending the propagation speed to the data

Q. Under what conditions is this linearization justified?



Problem: Show that F is Fréchet differentiable.

Previous work on Fréchet diff. of forward maps:

•Very general results of Blazek, Stolk and Symes (2013)

•More specific work of Kirsch and Rieder (2014)

Our eventual goal is to establish Fréchet diff. between
Banach function spaces (for wave speed and data)
that reflect known operator degeneracies of DF ,
which are known to be sensitive to the data acquisition
geometry.



Mathematical model

Time dependent wave eqn without source term:(
∇2 − c(x)−2∂2

t

)
U(x, t) = 0

c(x) = propagation speed.

Source at location x = s emits pulse: spatial-temporal
waveform W (x− s, t), e.g., δ(x− s)δ(t).

E-field component/wave U(s, x, t) satisfies

(
∇2
x−c(x)−2∂2

t

)
U(s, x, t) = W (x−s, t), U ≡ 0, t << 0



Write U = U in + Usc, with incident field

U in = G0 ∗W (x− s, t), G0 = −δ(t− |x|/c0)

4π|x|
satisfying free-space WE,

(
∇2
x−c−2

0 ∂2
t

)
U in(s, x, t) = W (x−s, t), U ≡ 0, t << 0

=⇒ Usc satisfies

(
∇2
x−c−2

0 ∂2
t

)
Usc(s, x, t) = −V (x)·∂2

tU, U
sc ≡ 0, t << 0,

V (x) = c0(x)−2 − c(x)−2 = reflectivity function.



SAR Problem: Recover V (x), hence c(x), from

uD(s, r, t) = Usc(s, x = r, t)|D
for various data acquisition geometries D.

•Monostatic: R = S ∈ Γ, flight path,
straight or curved

•Bistatic: S ∈ Γ1, R ∈ Γ2,
possibly at different altitudes and speeds

• Single or multiple passes: dim(D)=2 or 3.



Microlocal SAR Problem:

Detect edges or other singularities of c(x)
(at least their locations and orientations) from uD.

Many D studied, based on a
single scattering/Born approx./formal linearization.

Two common features:

•Ambiguity artifacts: multiple locations/orientations
of edges can give rise to same data.

•Degeneracy artifacts: operator theory and estimates
worse than might expect.

Map F : c(x) → uD(s, r, t) is a nonlinear mapping.
Want to understand validity of the linearization.



Formal linearization

Convenient to use γ0 := c0(x)2, γ = γ(x) := c(x)2.

Let �γ = γ(x)∇2
x − ∂2

t , and write γ = γ0 + δγ,
uD = u = u0 + δu. Then,

�γu =
(
(γ0 + δγ)∇2

x − ∂2
t

)
(u0 + δu)

= �γ0u0 + (δγ)∇2
xu0 + �γ0(δu) mod δ2.

=⇒
DF

(
γ0
)
(δγ) := δu = −�−1

γ0

(
(∇2u0) · δγ

)
,

where �−1
γ0

is the forward solution operator for �γ0.



Differentiability of F

Def. Let X and Y be Banach spaces, F : X → Y
a map, and x0 ∈ X and y0 = f (x0) ∈ Y . Then F
is Fréchet differentiable at x0 if there exists a a
bounded linear operator DF (x0) : X → Y such that

F (x) = y0 + DF (x0)(x− x0) + o
(
||x− x0||X

)
as ||x− x0||X → 0.

In our setting, reasonable to aim for a quadratic bound:

||u− u0 −DF
(
γ0
)
(γ − γ0)||Y ≤ C||γ − γ0||2X .

Problem: Find pairs of function spaces, X for γ(x)
and Y for uD(s, r, t), for which this holds.



Set

v := u−u0−DF
(
γ0
)
(γ−γ0) = u−u0−�−1

γ0

(
(∇2u0)·δγ

)
.

Apply �γ to v. Find:

v = �−1
γ

(
δγ · ∇2�−1

γ0

(
(∇2u0) · δγ

))
.

Recalling u0 = �−1
γ0

(W s), W s(x, t) := W (x− s, t),
→ form bilinear operator,

B(f, g)(s, r, t) := �−1
γ

(
g · ∇2�−1

γ0

((
∇2�−1

γ0
W s
)
· f
))



Problem: Find pairs of function spaces X for γ and
Y for u such that

(i) For γ(x) ∈ Γ+, the strictly positive cone of X ,
the forward source problem �γU = W has a solution
with u = Usc|D ∈ Y .

(ii) For γ ∈ Γ+, the formal DF (γ) : X → Y is a
bounded operator.

(iii) For some M <∞,

||B(f, g)||Y ≤M ||f ||X · ||g||X .

We search for such X, Y among standard L2-based
Sobolev spaces, Hp = W 2,p = L2

p, p ∈ R.



Three assumptions

1. No caustics. The background propagation speed
c0(x) has simple ray geometry (no multi-pathing/caustics).
=⇒ Well-defined time-of-travel metric, d0(x, y).

2. No short-range scattering: If incident wave
from s scatters at x′ to x′′ and back up to r, then
|x′ − x′′| ≥ ε > 0.

Note: (1) and (2) are stable conditions and hold for
any speed c(x) close to c0 in C3-norm. In particular,
such c(x) also has a metric, dc(x, y).



3. Conormal wave-form. The wave-form W is
conormal for the origin in space-time, of some order
m ∈ R:

W (x, t) =

∫
R3+1

ei[x·ξ+tτ ]am(ξ, τ ) dξ dτ,

with am ∈ Sm1,0, a symbol of order m ∈ R. Such W

are smooth away from x = 0, t = 0, e.g., δ(x) · δ(t) is
of order m = 0.

N.B.The spaces for which we currently have results are
too regular to include one model reflectivity function:

V (x) = c0(x)−2−c(x)−2 = g(x1, x2)·δ(x3−h(x1, x2))

where g = ground reflectivity and h = altitude.



Prop. If c0 ∈ C∞, the formal DF (γ0) has Schwartz
kernel

KDF (s, r, t, x′) =

∫
ei[t−dc0(s,x′)−dc0(x′,r)]τam+2(τ ) dτ.

Thus, DF (γ0) is a linear generalized Radon transform
=⇒ a Fourier integral operator (FIO) of order

m + 1− dim(D)− 3

4
and has canonical relation

CDF = N∗{dc0(s, x′)+dc0(x′, r) = t}′ ⊂ T ∗D×T ∗R3

which is nondegenerate. Thus, for all p ∈ R,

DF (γ0) : Hp(R3)→ Hp−m−5−dim(D)
2 (D).



B(f, g)(s, r, t) =

∫
eiφ(s,r,t,x′,x′′;τ )a(τ )f (x′)g(x′′) dτ dx′ dx′′,

where a is a symbol of order m + 4 and

φ(s, r, t, x′, x′′; τ ) :=
[
t−dc0(s, x′)−dc0(x′, x′′)−dc(x′′, r)

]
τ.

which encodes double-scattering events.

Note: first two metrics are for c0(x), but last is for c(x).

B is a bilinear generalized Radon transform / FIO.

No general theory, so use ad hoc methods.



Can think of B as a linear gen. Radon transf., B̃,
applied to f ⊗ g = f (x′) · g(x′′) on R3+3.

Prop. If assumptions (1)-(3) hold and c0, c ∈ C∞,

B̃ is a linear FIO of order

m +
9− dim(D)

2
− 6− dim(D)

4

and has canonical relation C
B̃
⊂ T ∗D × T ∗R6 which

is nondegenerate. Thus, for all p ∈ R,

B̃ : Hp(R6)→ Hp−m−9−dim(D)
2 (D).



Using additional information about C
B̃

and
tensor products f ⊗ g, for p ≥ 0 can be improved to

B : Hp(R3)×Hp(R3)→ H2p−m−9−dim(D)
2 (D).

Comparing the estimates for DF (γ0) and B, see that

we can takeX = Hp(R3) and Y = Hp−m−5−dim(D)
2 (D)

if p ≥ 2. Also need Hp ↪→ C3(R3) for stability
of Assumptions 1 and 2.

By Sobolev embedding, any p > 9/2 suffices.



What remains to be done

1. We believe can extend this to general
γ ∈ Γ+ ⊂ Hp(R3) close to γ0 ∈ C∞.This would give
Fréchet differentiability at smooth backgrounds c0.

2. Extending this to get Fréchet diff. at general γ0
(not necessarily C∞) will be more challenging.

3. Lowering the regularity assumptions to include rea-
sonable models of surface reflectors.

Thank you!

revised 10/18/2017


