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0 Introduction and notations

In dynamical systems theory, iterating a map from a space to itself generates a
discrete-time dynamical system. One way to measure the complexity of such a
system is by using the notion of entropy. According to [39] p. 313], entropy in
dynamical systems is a notion that measures the rate of increase in dynamical
complexity as the system evolves with time.

The various existing forms of entropy in dynamical systems theory are
each suitable for use in a certain category. For instance, topological entropy
was introduced by Adler, Konheim, and McAndrew in [I] for dynamics in the
category of compact topological spaces with continuous morphisms. Similarly,
measure-theoretic entropy was introduced by Kolmogorov in [22] and later
improved by Sinai in [37], for dynamics in the category of probability spaces
with measure-preserving morphisms.

Our primary objective in this paper is to introduce and develop a new
form of entropy, algebraic entropy, that can be used as a tool in studying
homological properties of Noetherian local rings. To describe our main results
we need two definitions.

Definition 1 A homomorphism f : (R, m) — (S,n) of Noetherian local rings
is said to be of finite length, if it is local and f(m)S is n-primary. In this case
we define the length of f, A(f) € [1,00) as A(f) := £s(S/f(m)S). We say f is
contracting, if for every x € m the sequence {f"(x)},>1 converges to 0 in the
n-adic topology of S.

Remark 1 a) For local homomorphisms of Noetherian local rings, finite =
integral = finite length, and finite = quasi-finite = finite length. b) In [4,
Lemma 12.1.4] it was shown that a local endomorphism ¢ of a Noetherian local
ring (R, m) is contracting if and only if ¢¢(m) € m?, where e is the embedding
dimension of R.
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Definition 2 A local algebraic dynamical system is a discrete-time dynamical
system that is generated by iterating an endomorphism of finite length ¢ of a
Noetherian local ring R. If (R, ) and (S, ) are two local algebraic dynamical
systems, a morphism f : (R, p) — (S, 1) between these two dynamical systems
is a local homomorphism f : R — S such that ¥ o f = f o .

In this paper we study the category of local algebraic dynamical systems. Our
main result in Section [ is:

Theorem 1 Let (R, ) be a local algebraic dynamical system. Suppose R is of

dimension d and embedding dimension e. Let X be as defined in Definition [1]

a) The sequence {(log A\(¢™))/n}n=1 converges to its infimum that is finite.
We define the algebraic entropy hais(@, R) of ¢ as this limit.

b) If ¢ is in addition contracting, then e - hag(p, R) = d - log2.

c) If R is of prime characteristic p > 0, the algebraic entropy of the Frobenius
endomorphism is equal to d - logp.

Remark 2 a) Calling a quantity entropy requires justification. The analogies
between hais(¢, R) and topological entropy serve to justify our terminology.
We will show a number of such analogies in this paper. b) The definition of
algebraic entropy can be stated for graded self-maps of finite length of graded
rings over a field. Thus, algebraic entropy can also be defined for such maps.

We prove Theorem [1] in Section We also provide lower and upper bounds
vy, and wy, for algebraic entropy. These bounds are inspired by a work of Samuel
in [34, p. 11]. The lower bound vy, for algebraic entropy has also been studied
by Favre and Jonsson in a different context, in [12]. In [I2] Theorem A] they
prove that if k is an arbitrary field and ¢ is a self-map of the ring k[X, Y],
then vy, (¢) is a quadratic algebraic integer.

In Sections [T.4] and [I.§ we develop the properties of algebraic entropy. A
remarkable feature of algebraic entropy is that it shares standard properties of
topological entropy. Indeed, writing h(y) for entropy of a self-map ¢ of a space
X, algebraic and topological entropies both satisfy conditions of following type:
1) h(e') =t-h(p) for all t € N, where ¢! = po@o---0¢p (t copies).

2) If Y c X is a closed p-invariant subspace, then h(poly) < h(p).

3) If f: X — X' is an isomorphism, then h(¢) = h(fopo f71).

4) If X =UY;, i =1,...,m, where the Y; are closed ¢-invariant subspaces,
then h(p) = max {h(¢ly,) : 1 <i<m}.

These conditions were proved in [I] for topological entropy. We will establish

them for algebraic entropy in Section Some other important results in

Sections|l.4|and [1.5|are invariance of algebraic entropy under flat morphisms of

finite length between two local algebraic dynamical systems, and the possibility

of computing algebraic entropy in mixed characteristic by reducing to equal

characteristic p > 0.

When two or more forms of entropy can be used to study the complexity
of a system, often interesting relations emerge between them. These relations
have been studied intensively. For a survey of these studies and some open
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questions, the interested reader can consult [25]. In Section we deal with
finite self-maps of local domains and explore the connection between degree
and algebraic entropy of these maps. In particular, for local Cohen-Macaulay
domains we establish a formula relating degree and algebraic entropy, that is
expected from topology.

In Section we consider local algebraic dynamical systems (R,¢) in
which ¢ is integral. Denoting the self-map induced by ¢ on Spec R by %,
we show that when Spec R = V(ker ), “p permutes irreducible components
of Spec R. As a result, irreducible components of Spec R are invariant under
some iteration of .

In Section [2] we have two important results. First, using algebraic entropy
we extend numerical conditions of Kunz’ Regularity Criterion to arbitrary
characteristic. To be more precise, in Section we prove:

Theorem 2 Let (R, m,p) be a local algebraic dynamical system of arbitrary
characteristic. Set d := dim R. Let hag(p, R) be the algebraic entropy of this
system. Define q(¢) := exp(haig(p, R)/d) and consider the conditions:

a) R is reqular.

b) ¢ : R— R is flat.

c) A(w) = alp)".

d) Ap") = q(e)™ for some n € N.

Then a) = b) = ¢) = d). If in addition ¢ is contracting, d) = b) = a).
That is, when ¢ is contracting all above conditions are equivalent.

We should note that Avramov, Iyengar and Miller have proved the equivalence
of conditions a) and b) (and more) in [4] using different methods. In our proof,
we will use Herzog’s proof in [19, Satz 3.1] to prove the implication b) = a).
He originally wrote it for the Frobenius endomorphism. This part of our proof,
however, is not new and has also appeared in [9, Lemma 3].

In Section [2.2] we propose a characteristic-free definition for the Hilbert-
Kunz multiplicity in terms of algebraic entropy. From Theorem [2] it quickly
follows that the generalized Hilbert-Kunz multiplicity of a regular local ring
with respect to an arbitrary self-map of finite length is 1. This is a well-known
fact in the case of the Frobenius endomorphism.

Section [2.3]is inspired by a result of Fakhruddin on lifting polarized self-
maps of projective varieties over an infinite field to an ambient projective space.
Here we consider the analogous lifting problem for self-maps of finite length
of equicharacteristic complete Noetherian local rings, and prove a Structure
Theorem for them. As an improvement over Fakhruddin’s result, we do not
assume our fields to be infinite. Our second main result in Section [2] is:

Theorem 3 (Cohen-Fakhruddin) Suppose in a local algebraic dynamical
system (A, n, ), A is a homomorphic image w : R — A of an equicharacteristic
complete regular local ring (R,m). Then ¢ can be lifted to a self-map of finite
length ¥ of R such that moy = o, i.e., m: (R, ¥) — (A, @) is a morphism
between two local algebraic dynamical systems.
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0.1 Notations and terminology

All rings in this paper are assumed to be Noetherian, commutative and with
identity element. By a self-map of a ring we mean an endomorphism of that
ring. For a self-map ¢ of a ring we will write ™ for the n-fold composition of
o with itself.

If M is an R-module of finite length, we will denote its length by ¢r(M).
If M is a finitely generated R-module, we will denote its minimum number of
generators over R by u(M). Given a ring homomorphism f : R — S and an
S-module N, we will denote by fi N the R-module obtained by restriction of
scalars. That is, fi N is the R-module whose underlying abelian group is N
and whose R-module structure is given by r-x = f(r)x, forr € Rand x € f, N.
Similarly, we will denote by fi S the ring S considered as an R-algebra via f.
This notation is consistent with the notation used in [7].

The set of all minimal prime ideals of a ring R will be denoted by Min(R).
If ¢ is a self-map of a ring R, we will denote the self-map induced by ¢ on
Spec R by “p.

1 Algebraic entropy
1.1 Preliminaries

In this section we gather some preliminary material that we will refer to
throughout the paper. We have omitted the majority of proofs, because they
are fairly elementary and the reader can either produce them easily, or find
them in the literature.

Proposition 1 Let f: (R,m) — (S,n) be a homomorphism of finite length of
Noetherian local rings.

a) If p is a prime ideal of S such that f=(p) = m, then p = n.

b) If q is an m-primary ideal of R, then f(q)S is n-primary.

Corollary 1 Let f : (R,m) — (S;n) and g : (S,n) — (T,p) be two local
homomorphisms of Noetherian local rings. If f and g are both of finite length,
then go f is also of finite length.

Corollary 2 Let (R, ) be a a local algebraic dynamical system. Then @™ is
of finite length for allmn > 1.

Proposition 2 Let f : R — S be a local homomorphism of Noetherian local
rings with residue fields kr and ks and assume [fi ks : kgr] < . If N is
an S-module of finite length, then f. N is an R-module of finite length, and
ER(f* N) = [f* k‘s : kJR] Zs(N)

Corollary 3 Let (R,m,k) be a Noetherian local ring, and let ¢ be a finite
local self-map of R. Then pu(pd R) =@k k]™ - A(™).
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Proof By Nakayama’s Lemma u(} R) = dimg (o} R/m ¢} R). Furthermore
dimy, (¥ R/mpl R) = lr(p R/mol R) = L (p«(R/¢"(m)R)).
The result follows from Proposition [2]if we note [} k : k] = [p« k : k]™.

Definition 3 Let (R, ¢) be a local algebraic dynamical system. An ideal a of
R is called p-invariant, if ¢(a)R € a.

Proposition 3 Let (R,m), ¢ be a local algebraic dynamical system. Suppose
a is a w-invariant ideal of R, and let @ be the local self-map induced by ¢ on
R/a. Then @ is of finite length, and for all n € N:

R/a

R
R+ alja)

)\(5") = gR/u( —KR(W)

Proposition 4 Let f: (R,m) — (S,n) be a homomorphism of finite length of
Noetherian local rings. Let M be an R-module of finite length. Then

a) M ®gr S is of finite length as an S-module.
b) In general £s(M ®r S) < A(f) - Lr(M).
c) Ifin addition f is flat, then £g(M ®r S) = A(f) - Lr(M).

Corollary 4 Suppose f: (R,m) — (S,n) and g : (S,n) — (T, p) are two local
homomorphisms of finite length of Noetherian local rings. Then:

a) In general A(g) < Mg o f) < Ag) - A(f)-
b) If in addition g is flat, then A(go f) = A(g) - A(f).

Proof a) By Corollary A(g o f) < o0. Since f is local, g(f(m)S)T < g(n)T.
Thus p(T/g(n)T) < £p(T/g(f(m)S)T). This means A(g) < A(g o f). For the
second inequality use the canonical T-module isomorphism

T/g(f(m)S)T = (5/f(m)S) @s T
(see, e.g., [0, Chap. II, § 3.6, Coroll. 2 and 3, pp. 253-254]). By part b) of
Proposition []
Mg o f) =Lr((S/f(m)S) ®s T) < Ag) - £s(S/f(m)S5) (1)
= Ag) - A(f)-

b) If ¢ is flat, then by part ¢) of Proposition |4 the inequality in Equation
turns into an equality, and the result follows immediately.

Corollary 5 Let (R, ) be a local algebraic dynamical system. Then

a) In general AM(¢™) < A(p)™ for alln e N.
b) If in addition ¢ is flat, then A(¢™) = A(p)™ for all n € N.

Proof By induction on n and using Corollary [4]
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1.2 Examples of self-maps of finite length

In this section we provide some examples of self-maps of finite length.

Example 1 If R is a local ring of positive prime characteristic p, then the
Frobenius endomorphism z — zP is a contracting self-map of finite length.

Ezample 2 A power series ring R := k[Xy,...,X,] over a field k has lots
of self-maps of finite length. If elements f1,..., f, of R generate an ideal of
height n in R, then we obtain a self-map of finite length by setting X; — f;
for 1 < ¢ < n. By Theorem [3] every self-map of finite length of a complete
equicharacteristic local ring is induced by a self-map described in this example.

Ezample 8 Let R := k[X1,...,X,] be a power series ring over a field k, and

let ¢ be a self-map of finite length of R, e.g., as defined in Example [2} Let

z # 0 be an arbitrary element of the maximal ideal of R. Then the ideal

a generated by z,¢(2),p?(z2),... (orbit of 2z under ¢) is p-invariant. Thus ¢

induces a self-map of finite length @ on R/a. Moreover, if ¢ is contracting,

then so is p. Macaulay 2 can be used to generate concrete examples of this

type. We mention a few such examples here. Let k be a field of characteristic

zero, and let R and a be as above.

a) n=>5, 2= XXy + X5 + X + X2. Define ¢ as X; — X2, for 1 <i < 4,
and X5 — X2. Then p(a) =5 and dim R/a = 2.

b) n =6, z = X + X5 + X5 + X] + X} + X{3. Define ¢ as X; — X2, for
1 <9 <6. Then p(a) =5 and dim R/a = 2.

) n="7,2=X1XoX3+X;+X2Xs+X3. Define p as X; — X2, for2<i <6
and X; — X2, X7 — X?. Then p(a) =5 and dim R/a = 3.

d) n =8, 2 = X1 X] X2 + X3X2 + X2X¢ + X7. Define ¢ as X; — X2, for
3<i<8and X1 — X3, Xo — XZ. Then p(a) =5 and dim R/a = 4.

Ezample 4 Let R := k[X1,...,X,] be a power series ring over a field k, and
let a be an ideal of R with homogeneous generators that can be expressed in
the form monomial = monomial. Then the self-map of R given by X; > X
for some integer d > 1, induces a contracting self-map of finite length on R/a.

1.3 Existence and estimates for algebraic entropy

In this section we prove Theorem [l We also provide a lower bound v, and

an upper bound wy, for algebraic entropy. The lower bound vy for algebraic

entropy has also been studied by Favre and Jonsson in a different context,

n [12]. In [I2] Theorem A] they prove that if k is an arbitrary field and ¢ is

a self-map of the ring k[X, Y], then v, (p) is a quadratic algebraic integer.
We begin with an example.

Ezample 5 Let (R,m) be a Noetherian local ring of dimension zero, and let
¢ be a local self-map of R. Then R is Artinian and 1 < A(¢™) < ¢(R) < .
Apply logarithm, divide by n and let n approach infinity to get hais(¢, R) = 0.
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Thus, the algebraic entropy of any local self-map of a Noetherian local ring of
dimension zero is 0.

The lemma that follows is fairly well-known in dynamical systems.

Lemma 1 (Fekete) Let {a,} and {b,} be sequences of real numbers that
satisfy the following conditions:

a) {an/n} is bounded above, a, = 0 and b, =0 for all n € N.
b) For alln,meN, apym = an + ap and by i < by + by, respectively.

Then the sequences {a,/n} and {b,/n} are both convergent. In fact
{an/n} — sup{a,/n} and {b,/n} — inf{b,/n}.
n n

Proof For a proof of {b,/n} — inf, {b,/n} see, for example [38, Theorem 4.9].
We should note that since the terms b, of the sequence are non-negative,
inf, {b,/n} is a non negative real number. For a proof of {a,,/n} — sup, {a,/n}
let v := sup,, {a,/n}. By assumption (a), « is a non negative real number. For
every € > 0 there exists ng such that a,,/ng = o —e Given an integer n > ny,
let us write n = ngq + r, with 0 < r < ng. Then using (a) and (b)

Ap Z Gpgg + O 2 Apog 2 G Qpg-
From these inequalities we deduce

logan  gno logan, _gmo (M0

= = °
n n no n no +1/q

Thus, if we take n large enough so that ng/(ng +r/q) = (o — 2¢)/(ac — €) then
we obtain (a — 2¢) < ap/n < . The result follows.

The following definition is inspired by a definition in [34] p. 11].

Definition 4 Let f : (R,m) — (S,n) be a local homomorphism of finite
length of Noetherian local rings. We define

v(f) = max{k e N| f(m)S c n*},
w(f) = min{k € N [ n* < f(m)S}.

Remark 3 Tt quickly follows from this definition that n®()  f(m)S < nv(/),
Thus, we always have v(f) < w(f).

Lemma 2 Let f: (R,m) — (S,n) and g : (S,n) = (T,p) be local homomor-
phisms of finite length of Noetherian local rings. Then

v(g) - v(f),
w(g) - w(f).

v(go f)
w(go f)

N WV
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Proof First note that for an ideal a of S, g(a™)T = [g(a)T]™ for all n € N.
(see [2, Exercise 1.18, p. 10]). We can write

[(g 0 /)T = g(f(m)S)T < gn* )T
— [g(n)T]“(f) R c pr@v()
Thus, by definition of v(g o f) we must have v(go f) = v(g) - v(f). Similarly

p@wlf) [g(n)T]w(f) = gn“NHT
< g(f(m)S)T = [(g o f)(m)]T.
Again, by definition of w(g o f) we must have w(g o f) < w(g) - w(f).

Corollary 6 Let (R, m, ) be a local algebraic dynamical system. Then for all
m,n € N the following inequalities hold:

v(e™T) = w(e") - v(e™),
w(e™™™) <w(e") - wle™).

Proof Apply Lemma [2] taking ¢" as g and ¢™ as f.

Proposition 5 Let (R, m, ) be a local algebraic dynamical system. Then the
sequences {(logv(¢™))/n} and {(logw(e™))/n} converge to their supremum
and infimum, respectively. We will denote these limits by vn(p) and wy(p).

Proof We will apply Lemmal[] taking {logv(¢")} and {logw(¢™)} as {a, } and
{b,} in the lemma, respectively. We verify that the conditions of the lemma
are satisfied. By Corollary [6] and Remark [3] for every n € N

L<[o(@)]" < v(e") < w(e”) < [w(p)]"

Thus, condition a) of Lemma [1]is satisfied. Moreover, Corollary |§| shows that
condition b) of Lemma [1]is also satisfied. Hence the sequences {log(v(¢™))/n}
and {log(w(e™))/n} converge to their supremum and infimum, respectively.

Theorem 4 Let (R, m, ) be a local algebraic dynamical system, and let d :=
dim R. Then

d - vp(p) < hag(p, R) < d - wi(e).
Proof By Definition 4, m*(#") < ¢*(m)R ¢ m*(¥"). Thus
Cr(R/mP)) < M) < Cr(R/m ).

We consider two cases: v(¢™) — o0 and v(¢™) —» oo. In the first case by
Remark (3| w(¢™) — o0, as well, and for large n, the lengths £z(R/m*(¥")) and
(r(R/m™¥")) are polynomials in v(p™) and w(y"), respectively, of precise
degree d, with highest degree terms e(m)(v(¢™))?/d! and e(m)(w(p™))4/d!.
Thus, for large n we obtain

W (oo < 2" < W ().

/N




10 Mahdi Majidi-Zolbanin et al.

Applying logarithm, dividing by n and letting n approach infinity, we see that
0 <d-vp(p) < haglp, R) < d-wp(p) < 0.

In the second case, when v(¢™) - 00, the sequence {v(¢™)} must be bounded.

Hence, there is a constant ¢ such that 1 < v(p™) < ¢. Applying logarithm,

dividing by n and letting n approach infinity, we see that v, () = 0. Now, if
w(p™) — o0, then starting with the inequality

1< A@") < Cr(R/m" "))
and repeating the same argument as before, we arrive at the desired inequality

vp(p) =0 < halg(‘p) < d-wp(p).

Finally if w(p™) - o0, then the sequence {w(¢™)} is also bounded and there
exists a constant ¢’ such that 1 < w(p™) < . After applying logarithm,
dividing by n and letting n approach infinity, we see that wy(p) = 0. Since
vp () = 0 as well, the proof will be completed by showing hag (¢, R) = 0. This
follows from the inequality

1<) < Lr(R/m®#") < Lp(R/m®)
by applying logarithm, dividing by n and letting n approach infinity.
Proof (of Theorem a) We apply Lemma taking b,, = log A(¢™). We verify
the conditions of this lemma. By Corollary [4]
log A(™ ™) < log A(™) + log A(¢™).

The condition log A(¢™) = 0 is clear. By Lemmal[I|the sequence {(log A(¢"))/n}
converges to its infimum, which is a real number.

b) If ¢ = 0 then there is nothing to prove. Assume e > 0. Since ¢ is
contracting, by Remark |1} ¢¢(m)R < m?. Hence

e (m)R < m?".
By definition of v( - ) in Definition {4} v(¢™¢) = 2™. Thus
(log v(¢"™))/(ne) > (nlog2)/ne.
Letting n approach infinity we obtain vy, (¢) > log 2/e. Now using Theorem
haig (0, R) = d - vn(p) = (d-log2)/e.

c) If R is of characteristic p and ¢ is its Frobenius endomorphism, then
by [23], Proposition 3.2]

P < M) < T }[43 (R/(y1,---,ya)R)] - p™,

where {y1,...,yq} runs over all systems of parameters of R. Apply logarithm,
divide by n and let n approach infinity. We see haig(p, R) = d - logp.

The following corollary can be thought of as the converse of Example

Corollary 7 Let (R,m, ) be a local algebraic dynamical system and suppose
¢ is contracting. If hag(p, R) =0, then dim R = 0.
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1.4 Properties of algebraic entropy

We establish a number of important properties of algebraic entropy in this
section. As mentioned in the introduction, some of these properties are in
common between algebraic and topological entropies.

Proposition 6 Let (R, ) be a local algebraic dynamical system. Then for all
te N: halg(gﬁt, R) =t- halg(<P7R)-

Proof By definition of algebraic entropy
haig(#', R) = lim (1/n) - log A(¢"")
n—ow

¢ lim (1/(tn)) - log Ae'™)
=t hag(, R).

Proposition 7 Let f: (R,m,p) — (S,n,v) be a morphism between two local
algebraic dynamical systems. Assume that f is of finite length. Then

a) In general hag(¢, S) < haig(p, R).
b) If in addition f is flat, then hag(1),S) = haig(¢, R).

Proof a) By Corollary |2 and our assumptions, ©™ and ™ are also of finite
length. Noting that ¢ o f = f o ¢" for all n € N and using Corollary [4]

AW™) S MW" o f) = AMf e @) < AS) - AMe")- (2)

We obtain the result by applying logarithm to either side of this inequality,
then dividing by n and taking limits as n approaches infinity.
b) If f is flat, then using Corollary [4| we compute

A@") = AS) - Me™)/A) = A(f o ™) /A
= A" 0 [)/AS) S AW") - AS)/AS) = A@").

Thus, using Inequality 2L A(p™) < A(@™) < A(f) - A(¢™). The result follows
quickly by taking logarithms, dividing by n, and taking limits as n approaches
infinity.

~—

/A
/A

Corollary 8 Let (R, m,p) be a local algebraic dynamical system. If]% is the
m-adic completion of R then haz(p, R) = haig($, R).

Proof We have a flat morphism of finite length ~: (R, ¢) — (]%, ?).

Corollary 9 Consider homomorphisms of finite length f : (R,m) — (S,n)
and g : (S,n) - (R, m) of Noetherian local rings. Then

halg(g Ofv R) = halg(f OgaS)'
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Proof f:(R.gof) — (S.fog) and g: (S, fog) — (R,go f) are morphisms
between local algebraic dynamical systems. By Proposition [7]

halg(fog,S) <halg(gof7R) and halg(gova) <halg(fogas)'
The result follows immediately.

Corollary 10 (Invariance) Let (R,m) and (S,n) be Noetherian local rings.
Suppose f : R — S is an isomorphism, and let ¢ be a self-map of of finite
length of R . Then hag(f oo f71,5) = hag(p, R).

Proof Apply Corollary |§| to homomorphisms foy: R— Sand f~!:S — R.

Corollary 11 Let (R, p) be a local algebraic dynamical system and let a be a
p-invariant ideal of R. Write © for both self-maps induced by ¢ on R/a and

R/p(a)R. Then hag(, R/a) = haig(, B/p(a) R).

Proof Let ¢’ : R/a — R/p(a)R and id : R/p(a)R — R/a be homomorphisms
induced by ¢ and identity map of R. Apply Corollary [9|to ¢’ and id.

We will need the following two lemmas in the proof of Proposition [§]

Lemma 3 Let {a,} and {b,} be two sequences of real numbers not less than
1 such that lim,_,,(loga,)/n = a and lim,,_,,.(logb,)/n = B exist. Then

lirrjl( log(an + by)/n = max{a, 5}.

Proof See [1l p. 312].

Lemma 4 Let (R, m, ) be a local algebraic dynamical system. Let aq,. .., as
be a collection of not necessarily distinct p-invariant ideals of R. Let B and
@; be the self-maps induced by ¢ on R/][,a; and R/a;, respectively. Then

haig (@, R/] [;0:) = max{hag(9;, R/a;) |1 <i < s}.

Proof We proceed by induction on s, the number of ideals, counting possible
repetitions. There is nothing to prove if s = 1, so suppose s = 2. Without loss
of generality we may assume

haig (®1, R/a1) = max{halg (@1, R/ay), haig (P, R/a2)}.

Since ajas C a1, we have a; n(a1as + " (M)R) = ajas + (a1 np™(m)R). Thus,
if we apply the Second Isomorphism Theorem to make the identification
a + " (m)R a
arag + e"(mM)R ~ araz + (a3 N e(m)R)’

then we can write an exact sequence

ay R R

ajag + (ap ne"(M)R)  ajag +p"(m)R  a; + " (m)R
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From this exact sequence

(r(R/[ar + ¢"(m)R]) < Lr(R/[ar02 + " (m)R])

(a1/[a1az + (a1 N @™ (m) R)]) (3)
(B/[ar + @™ (m)R]).

Since in the quotient ring R/(ajaz) the ideal as/(aias) annihilates a; /(ajaz),
we can consider a;/(ajaz2) as a finite [(R/(a1az2)) /(az/(a1az))]-module and as
such, there is a surjection

(R/(a1a2)>t N : “o

az/(aaz) a1dz)

</
=lp
+ AR

If we tensor this surjection over the quotient ring R/(ajas2) with
R/(a1 (12)
[a1az + ™ (m)R]/(a1a2)

and then compare the lengths in the resulting surjection, by Proposition [3]
Proposition [2| and the Third Isomorphism Theorem, we can quickly see

Cr(ar/[araz + a1 - " (m)R]) < Cr(ar/[aiaz + a1 - ©"(m)R])
< t-Lr(R/[az + ¢"(m)R]).

Since £r(a1/[aras+(a;ne™(Mm)R)]) < €r(ai/[aiaz+ai-¢™(m)R]), the previous
inequality together with Inequality [3| yield

(r(R/[ar + " (m)R]) < (r(R/[ar0z + ¢"(m)R])
< Cr(R/[ar + " (m)R]) +t - Lr(R/[az + ¢"(m)R]).

Apply logarithm, divide by n, and let n approach infinity. By Lemma [3] and
Proposition [3]

haig(P1, R/a1) < halg(@, R/a1a2) < max{haig(9;, R/a1), haig (P2, R/az)}.

This establishes the result for s = 2. Now we assume the statement holds for
all s with 2 < s < ng, and we show it also holds for s = ng + 1. To this end,
we can write the product | [/ a; of our ideals in the form ([ /"%, a;)(an,+1)
and then apply the case s = 2 followed by the case s = ng to establish the

result for s = ng + 1, using the induction hypothesis.

Our next result shows that if all minimal prime ideals of a Noetherian local ring
R are invariant under a self-map of the ring, then the algebraic entropy is equal
to the maximum algebraic entropy of the self-maps induced on irreducible
components of Spec R.

Proposition 8 Let (R,m,¢) be a local algebraic dynamical system. Suppose
all minimal prime ideal of R are p-invariant and for each p; € Min(R), let @,
be the self-map induced by ¢ on R/p;. Then

haig(¢, R) = maxthag(@;, R/p:) | pi € Min(R)}. (4)



14 Mahdi Majidi-Zolbanin et al.

Proof Let Min(R) = {p1,...,ps} and let a = [, p;. Then a is contained in
the nilradical of R, hence a?¥ = (0) for some N. Therefore it is clear that
Pag(9, R) = haig (3, R/a). But by Lemma

hatg(#, R/a™) = max{haig(9;, R/p:) | pi € Min(R)}.

Remark 4 As we shall see in Proposition under certain conditions, when
a self-map is integral, minimal prime ideals are invariant under some power of
the self-map. As a result, we can apply Proposition [§] to a power of our self-
map in this case. We will obtain formulas similar to Formula [ in Corollary [14]
and Proposition [T5] below.

1.5 Reduction to equal characteristic

In this section we show that any self-map of a local ring of mixed characteristic

naturally induces a self-map of another local ring of equal characteristic p > 0

with the same algebraic entropy. Using this result, computing algebraic entropy

in mixed characteristic can be reduced to the case of equal characteristic p > 0.
For a given local algebraic dynamical system (R, m, ), we define

Si=r_, ¢"(R) and n:=(", ¢"(m). (5)

Lemma 5 Let (R,m,p) be a local algebraic dynamical system. Let S and n
be as defined in Equation[5, and let a be the ideal generated by n in R. Then

a) S is a local subring of R with mazimal ideal n.
b) a is a p-invariant ideal of R.
c) If v is in addition injective, then p(a)R = a.

Proof a) It is immediately clear that S is a subring of R and that n is an ideal
of S. To show that n is the (only) maximal ideal of S, consider an element
s € S\n. Since s ¢ n, there is an ng such that s ¢ ¢ (m). In fact, since for
n = ng, e"(m) S ¢ (m), we see that s ¢ ™ (m) for all n > ng. Hence, there
are units y, € R\m such that s = ¢"(y,) for all n = ng. Since s is clearly a
unit in R, it has a unique multiplicative inverse s~! in R. From uniqueness of
multiplicative inverse it immediately follows that we must have s~ = ¢"(y;1),
for all n > ng. Hence, s~! € S, that is, s is also a unit in S.

b) Note that by its definition, a has a set of generators z1,...,z4 € n. So
@(a)R can be generated by ¢(x1),...,¢(zy) and it suffices to show that each
¢(x;) is in a. Since x; € n, there is a sequence of element y;, € m such
that z; = o(yi1) = ... = " (Yin) = .... Thus, (@) = @*(ys1) = ... =
©" " (y; ) = ..., showing that ¢(x;) € n C a.

c) Now suppose ¢ is injective. To show ¢(a)R = a it suffices to show that each
x; is in @(a). Since z; € n, there is a sequence of element y; ,, € m such that
i = @Win) = ... = ¢"(Yin) = .... Since z; = ©(y;1), we will be done by
showing that y; 1 € n. By injectivity of ¢, yi1 = ©(yi2) = ... = ¢"(yin) =
..., which means y; ; € n.
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Remark 5 Let (R, m, ) be a local algebraic dynamical system and let n be as
defined in Equation [5| If n = (0), then by Lemma [5| R contains a field and
is of equal characteristic. As noted in [3, Remark 5.9, p. 10], this occurs, for
example, if ¢ is a contracting self-map.

Proposition 9 Let (R, m, ) be a local algebraic dynamical system. Let a be
the ideal of R defined in Lemmal[8, and let @ be the local self-map induced by
¢ on R/a. Then

a) halg(@, R/Cl) = halg(@a R)
b) If R is of mized characteristic, then R/a is of equal characteristic p > 0.

Proof a) Note that ¢™(m)R D a for all n > 1. Hence, ¢"(m)R + a = ¢"(m)R.
By Proposition |3} A(@™) = A(¢™). Our claim quickly follows.

b) With reference to Lemma [5] the image of the subring S of R in R/a is a
field, because it’s maximal ideal n is contained in a and is mapped to 0. Hence
R/a contains a field and must be a local ring of equal characteristic p > 0, as
its residue field is of characteristic p > 0.

1.6 Algebraic entropy and degree

The analogy between algebraic and topological entropies also extends to their
relation to the degree of the self-map. Misiurewicz and Przytycki showed
in [28], that if f is a C! self-map of a smooth compact orientable manifold M,
then hiop(f, M) = log | deg(f)|. For a holomorphic self-map f of CP", Gromov
established the formula Ao, (f, CP™) = log | deg(f)| in [I5]. Here deg(f) is the
topological degree of f.

In this section we obtain similar formulas relating algebraic entropy to
degree of finite self-maps of local domains. For local Cohen-Macaulay domains
we prove an analog of Gromov’s formula. But first we shall make it clear what
we mean by degree.

Definition 5 Let R be a Noetherian local domain, and let ¢ be a finite self-
map of R. Then by degree of ¢, deg(¢), we mean the rank of the R-module
@« R. Note that the equality deg(¢™) = [deg(¢)]™ holds for all n € N.

Proposition 10 Let (R, ) be a local algebraic dynamical system, where ¢ is
finite. If we denote the minimum number of generators of the R-module ¢} R
by u(py R), then the sequence {(log (e R))/n} converges to its infimum. We
will denote this limit by by po .

Proof We will apply Lemma [1} taking b,, = log u(p? R). To verify conditions
of Lemma (1| first note that the inequality b,y < b, + b, holds because if
{x1,...,2¢} and {y1,...,ys} are sets of generators of ! R and ¢ R over R,
respectively, then {¢™(y;)x; | 1 < ¢ <t,1 < j < s}is a set of generators of
©?T™ R over R. Therefore

(@™ R) < p(el R) - p(of R).
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On the other hand, it is clear that b, = log u(p? R) = 0. Hence, by Lemma
the sequence {(log 1(p} R))/n} converges to its infimum.

Corollary 12 Let (R, m, ) be a local algebraic dynamical system, where ¢ is
finite, and let k be the residue field of R. Then po = log[ps k : k] + hag (@, R),
where i, is as defined in Proposition [10,

Proof By Corollary [3| u(¢y R) = [@«k : k]™ - A(¢™). The result follows by
applying logarithm to both sides of this equation, then dividing by n and
letting n approach infinity.

Lemma 6 Let (R,m,p) be a local algebraic dynamical system, where R is a
domain and o is finite, and let k be the residue field of R. If q is an m-primary
ideal of R and n € N, then

e(q) (deg())"

e(p"(q)R) = 6
(" h) = S (6)
Proof Let d = dim R. By definition of multiplicity
n . d! VR
d! " R
= m ER(“”* ( ”(qm)R)>

= lim = ./ n(_ v
s md R(“D* ((gp”(q)R)m))
(for the last equality, see, e.g., [2, Exercise 1.18, p. 10]). Now by Proposition [2]
d! R d! R
lim — -/ (————)) = lim — [ptk:k] Ll ————
mk md R(“"* ((ga”(q)R)m)> i R LR R((cp"(q)R)m)
n . d! R
= [pa ks k]" - Tim ”R(W)
= [pak: K] - e(¢™(@)R).
So e(q, 9% R) = [« k : k]™ - e(¢™(q)R). On the other hand

e(q, o R) = e(a) - deg(#"),
(see [27, Theorem 14.8]) and Formula [6] quickly follows.
Remark 6 Formula@can also be deduced from [40], Corollary 1, Chapter VIII].

Corollary 13 Let (R, m,p) be a local algebraic dynamical system, where R is
a domain and ¢ is finite, and let k be the residue field of R. Set d := dim R and
define q(p) := exp(haig(p, R)/d). Let x(z1,...,2q4; R) be the Euler-Poincaré
characteristic of the Koszul complex on elements x1,...,zq4. The following
conditions are equivalent:

a) logdeg(p) = log[px k : k] + hag(¢, R)
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b) For any system of parameters {x1,...,xq} of R and for any n € N

X" (@), 0" (xa)s B) = (@)™ x(21,. was B). (7)
c) Equation@ holds for some system of parameters of R and some n € N.

Proof By [30, Chap. IV, Theorem 1] for any parameter ideal q of R generated
by a system of parameters {y1,...,yq} we have e(q) = x(y1,...,ya; R). By
Corollary 2] and Proposition [T} {¢™(z1),...,¢"(zq4)} is a system of parameters
of R for all n € N. The result quickly follows from Proposition[6]and Equation 6]
in Lemma [6l

Ezample 6 Let (R, m) be a Noetherian local domain of prime characteristic p,
and let ¢ be the Frobenius endomorphism of R. Then by [24, Proposition 2.3]
condition a) of Corollary [13| holds.

Proposition 11 Let (R, m, ) be a local algebraic dynamical system, where R
is a domain and ¢ is finite, and let k be the residue field of R. Then

a) logdeg() <log[ps k : k] + haig(p, R).
b) If in addition R is Cohen-Macaulay, log deg(yp) = log[w« k : k]+haig(p, R).

Proof a) Consider a minimal free presentation of the R-module ¢ R
R* - R' - "R — 0.

If we localize this presentation at (0) we see rank p R <t = u(p? R). On the
other hand by Corollary [3] u(ef R) = [w«k : k]™ - A(™). Since by definition
of degree rank 7 R = deg(y™) = (deg(y))", we obtain

(deg(p))"™ < [@u k= KI™ - Alg"™).

The desired inequality is obtained by applying logarithm, dividing by n and
letting n approach infinity.
b) Let q be an arbitrary parameter ideal of R. Then

A(@") = lr (R/@"(m)R) < g (R/e"(a)R).

If R is Cohen-Macaulay, then g (R/©™(q)R) = e(©™(q)R) (see, for instance,
[27, Theorem 17.11]). Thus

e(q)(deg(p))"”
[os ks k] 7

where the last equality holds by Lemmal6l Applying logarithm, dividing by n,
and letting n approach infinity we obtain

A(@") <e(P™(a)R) =

haig (0, R) < logdeg(p) — log[p. k : k].

This inequality together with the inequality in part a) yield the result.
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1.7 A note on projective varieties

In this section we will prove a formula similar to the formula in part b) of
Proposition [T} for finite polarized self-maps of projective varieties over a field.
We first establish a lemma.

Lemma 7 Let (X,0x) be a separated Noetherian integral scheme, and let
a be an additive non-negative function from coherent Ox-modules to [0, 00).
Then « is a constant multiple of generic rank.

Proof (due to Angelo Vistoli) By Noetherian induction we can assume that
for every proper integral subscheme Y of X, the restriction of o to coherent
Oy-modules is given by a constant multiple cy of generic rank at Y. Let F
be a coherent sheaf of Ox-modules supported on a proper integral subscheme
Y of X and let Z be the ideal sheaf of Y in X. Since X is Noetherian, there
is a (smallest) integer n such that Z"F = 0. Thus, F has a filtration

FRIF2I*°F2...21"F =(0).

So by additivity of a, a(F) = 3, | a(Z*"'F/I'F). The sheaves '~ F/T'F
are coherent sheaves of Oy-modules. Thus from the above sum we see that
a(F) is equal to cy times the length of the stalk of F at the generic point of Y.
On the other hand, the length of the stalk of the sheaf Ox/Z™ at the generic
point of Y is unbounded, as n — o0. However, by additivity and positivity
of a, the value of a(Ox/Z"™) is bounded by a(Ox). Hence ¢y = 0 and « is
zero on all coherent Ox-modules supported on a proper integral subscheme
of X. Next, we show that « is zero on all coherent torsion sheaves. Let F be
a coherent torsion sheaf of Ox-modules. By [18, Corollary 3.2.8, p. 43] any
coherent sheaf F has a filtration

F=F2Fi2F2...2F,=(0)

consisting of coherent O x-modules, such that the quotients F;/F; 1 are either
zero, or Ass(F;/Fii1) is exactly a single point and Ass(F;/F;+1) € Supp(F).
Again by additivity of «, a(F) = Z;:Ol a(Fi/Fiz1). If Ass(F;/Fiv1) is exactly
a single point, then Supp(F;/F;+1) is an irreducible proper (closed) subset of
X (see [18, Corollary 3.1.4, p. 37]). Thus, from the previous part, a(F) = 0.
In particular, if 7 — G is a generic isomorphism of coherent sheaves, then
a(F) = a(G).

Now suppose F is a coherent torsion-free sheaf on X with generic rank r.
Then there is an open affine neighborhood U of the generic point of X with a
monomorphism F|y — (’)%)T (see [31), Chap. II, Lemma 1.1.8]). We can extend
Flu to a coherent sheaf 7/ on X with a monomorphism 7 : ' < O" in
such a way that F'|y = F|y (see [13, Chap. VI, Lemma 3.5, p. 168]). Since n
is a generic isomorphism, a(F’) = a(O2") = r - a(Ox). On the other hand,
there is a coherent sheaf G on X with homomorphisms G — F and G — F’
that are generic isomorphisms (see [I3, Chap. VI, Lemma 3.7, p. 169]). The
result follows.
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A proof of the next theorem when X is a Kahler manifold appeared in [41]
Lemma 1.1.1]. A. Chambert-Loir has also given a proof of this theorem. Here
we present a proof using Lemma

Proposition 12 Let X be an integral projective variety of dimension d over
a field k and let ¢ : X — X be a finite morphism. Assume that (X, ) is
polarized by an ample line bundle L on X, that is, for some integer ¢ = 1,

©*(L) = LB, Then deg(y) = ¢?.

Proof To simplify notations, for any coherent sheaf of O x-modules F and for
n € Z we set F(n) := F Qo, L®". By Projection Formula and using the
assumption that £ is polarized,

(0+0x)(n) = 4 (Ox ®oy ¢*(LZ™)) = pu(LE™) = ¢4 (Ox(ng)), for ne Z.
Since ¢ is a finite morphism, it is affine. Hence (see [I7, Corollary 1.3.3, p. 88])
H' (X, 0. (Ox(ng))) = H(X,Ox(nq)), fori>0.

Writing x( - ) for the Euler-Poincaré characteristic, we obtain

Xk ((#+Ox) (1)) = x1(Ox (nq))- (8)

Replacing £ with £L&™ for large m if necessary, we may assume, without loss
of generality, that £ is very ample ([I6, Proposition 4.5.10, p. 86]). Then for
any coherent sheaf of Ox-modules F and any n € Z, the value of xx(F(n))
is equal to the value of the Hilbert polynomial of F at n, and the coefficient
of the leading term of the Hilbert polynomial of F is non negative (see [I7|
Theorem 2.5.3, p. 109]). Since xx( - ) is an additive function on the category
of coherent Ox-modules, we obtain an additive non negative function

()

n—o ’I’Ld

a(F) :=

from the category of coherent O x-modules to rational numbers. Note that if
dim Supp(F) < d then «(F) = 0 (see [I8, Proposition 5.3.1, p. 92]). From
Equation we quickly obtain a(p.Ox) = a(Ox) - ¢¢. On the other hand,
using Lemma [7]

a(p«Ox) = a(Ox) - deg(p).

Hence deg(y) = ¢%.

1.8 The case of integral self-maps

In this section we study local algebraic dynamical systems (R, ) generated
by integral self-maps. We show that when Spec R = V(ker ¢), %p permutes
the irreducible components of Spec R. Thus, there is a smallest number p such
that all irreducible components of Spec R are pP-invariant. We give formulas
relating algebraic entropy of P to algebraic entropies of its restrictions to
irreducible components of Spec R.
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Proposition 13 Let (R, ) be a local algebraic dynamical system. Assume
that ¢ is integral and Spec R = V (ker ). Then the restriction of *¢ to Min(R)
is a permutation of Min(R).

Proof Let ¢ : (R/ker ¢) — R be the map induced by ¢. We have a commuting
diagram

R——>R

| A

R/ker ¢

Let q € Min(R). Then by assumption ker ¢ < g, hence m(q) € Min(R/ ker ¢).
Since ¢ is integral, there is an element p € Spec R such that 7(q) = ¢ ~1(p).
Thus, q = ¢ 1(p), or equivalently q = %p(p). We claim that p € Min(R). If p
were not a minimal prime ideal of R, then it would contain a minimal prime
ideal p’. In that case 7(q) = @ '(p) 2 ¢ ~'(p’) and the minimality of 7(q)
would force ¢ ~*(p’) = 7(q). But since ¢ is integral, there can be no inclusion
between prime ideals of R lying over 7 (q) [27, Theorem 9.3]. This establishes
our claim that p € Min(R). Thus, we see that

Min(R) € % (Min(R)) .

Now, since Min(R) is a finite set, we must have Min(R) = *¢ (Min(R)). Hence
the restriction of ¢ to Min(R) is a bijective map of the set Min(R) to itself.

Corollary 14 Let (R, ) be a local algebraic dynamical system. Assume that
¢ is integral and Spec R = V(ker ). Let p be the smallest integer such that
P is the identity map on Min(R). For p; € Min(R) let @, be the self-map
induced by P on R/p;. Then

1 .
haig(p, B) = = - macthag (i, /pi) | pi € Min(FR)}-

Proof By Proposition 8] haig(¢?, R) = max{has(®@;, R/p:) | p; € Min(R)}. By
Proposition [6] Aaig (7, R) = p - hag(¢, R) and the result follows.

Corollary 15 Let (R, ) be a local algebraic dynamical system. Suppose ¢ is
integral and Spec R = V' (ker ). Then an element x € R belongs to a minimal
prime ideal of R, if and only if p(x) belongs to a minimal prime ideal of R.

Proof Let x be an element of R. If ¢(z) € p for some p € Min(R), then
x € ¢~ !(p). By Proposition 0~ (p) € Min(R). Conversely, suppose = € q
for some q € Min(R). Then by Proposition 13| there is a p € Min(R) such that
q= o 1(p). Hence p(x) € p.

Corollary 16 Let (R, ) be a local algebraic dynamical system. Assume that
¢ is integral and Spec R = V (ker o). If p ¢ Min(R), then ¢ '(p) ¢ Min(R).
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Proof This follows quickly from the proof of Proposition

Remark 7 If (R, ) is a local algebraic dynamical system, then for every n € N,
¢ (ker p™) < ker "1 < ker ™. Hence ¢ induces a local self-map of R/ker ¢".

Proposition 14 Let (R,m, ) be a local algebraic dynamical system. Let g,
be the local self-map induced by ¢ on R/ker o™, n € N. Then

a) halg(‘Pv R) = halg(¢n7R/ker @").
b) For large n, B, : R/ ker "™ — R/ker o™ is injective.
c) If v is integral, then so is @, (see [{, Chapter V, Proposition 2, p. 305]).

Proof a) Apply Corollary to the self-map " of R, taking ker ¢™ as the
ideal a in that corollary. Since ™ (ker ¢™)R = (0)

halg (@Z» R/ ker wn) = halg (@Z? R/@n(ker (Pn)R) = halg(SORa R)

The result follows from Proposition [6]

b) R is Noetherian, so the ascending chain ker ¢ < ker ¢? < ker¢® c ... is
stationary. Let ng be such that ker o™ = ker o"*! for n > ngy. We will show
that if n > ng, then @, : R/ ker ™ — R/ker ¢™ is injective. Let T € R/ ker ™.
Saying @,,(T) = 0 is equivalent to saying ¢(x) € ker ¢™, which is equivalent to
saying x € ker "1, Since ker "1 = ker ¢", we see that x € ker 9", or T = 0
in R/ker ¢™. Thus, @,, is injective.

c) Let m, : R —> R/ker¢™ be the canonical surjection. Then m, is in fact
a morphism between local dynamical systems (R, ) — (R/ker o™, 3,). Let
mn(x) € R/ ker ™. Since ¢ is integral, x satisfies an equation

2" + p(an_1)x" " + ...+ o(a1)z + o(ag) =0, a; € R.
Apply 7, and note that since 7, is a morphism, 7, o ¢ = ,, o m,. We obtain

(mn(2))" + B (T (an-1)) (T (@)™ + ... + B, (malao)) = 0.
Thus ,(x) is integral over the subring g, (R/ker ¢™) of R/ker ¢™.

Proposition 15 Let (R, m, ) be a local algebraic dynamical system, where ¢
is integral. Let @, be the self-map induced by ¢ on R/ker o™, n € N, and let
Tt R — R/ker ™ be the canonical surjection. Fiz a large enough n for which
©,, s injective and let p be the smallest integer such that “@F is the identity
map on Min(R/ker ¢™). Then

a) “m, (Min(R/ker ¢™)) = Min(R) n V (ker ").

b) If p; € Min(R) n V(ker ™) then p; is @P-invariant.

c) Forp; € Min(R) n V(ker ") if §,,, is the self-map induced by o¥ on R/p;

1 . n
hag(p, R) = 5 -max{halg(api,R/pi) | p; € Min(R) n V(ker ¢ )}
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Proof a) It is clear that “m, (Min(R/ker ¢™)) 2 Min(R) n V (ker ¢™). To show
the inclusion in the other direction, let ™ : R/ker ™ < R be the map induced
by ¢™. We have a commuting diagram

n

R—R

Tn
8071

R/ ker @"

Let p € aﬂ'n(Min(R/ker go”)) If p ¢ Min(R), then it would contain a prime
ideal p’ € Min(R). By assumption @,, is injective and integral. Thus, %@,
must permute elements of Min(R/ker ¢™) by Proposition In particular,
B, " (ma(p)) € Min(R/ker o). Since () (5) € (¢") 1 (8) = B, "(ma (b)),
we see that (¢")~1(p’) € Min(R/ker ¢™). Thus, (¢) 1(p’) = (¢™) (p). But
this is a contradiction, because (" is integral, and there can be no inclusion
between prime ideals of R lying over @, " (m,(p)) [27, Theorem 9.3]. Thus,
p € Min(R) as claimed.

b) m, : (R,¢") — (R/ker¢™,BP) is a morphism between local dynamical
systems. In other words, there is a commutative diagram

P
R—R

EP

R/ker " —> R/ker o".

From this diagram and the assumption that “®P is the identity map on
Min(R/ker ™), and by part a) it quickly follows that ¢?(p;)R < p;, for all
p; € Min(R) n V(ker ™).

c) By Proposition a and Proposition |§|

1
halg((P7 R) = ; ' halg(@f:a R/ ker 907])

Applying Proposition[8|to the local algebraic system (R/ker ¢™, ) we obtain

R/ker ¢"

W) | pl € MIH(R) N V(keI'QD )},

halg (@fa R/ ker Qan) = max {halg (@Eia
where @5 is the self-map induced by 3,7 on (R/ker ¢")/(p;/ker ™). To finish
the proof, apply Proposition [3] first and then Proposition [2] to obtain

R/ ker o™

W) = haig(®y,, B/pi).

halg (@El )
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1.9 Alternative methods for computing entropy

In this section we will show that algebraic entropy can be computed using any
module of finite length. We begin with a definition.

Definition 6 Let R be a Noetherian local ring, and let ¢ be a self-map of R.
Let R-Mod be the category of R-modules. For every n € N we define a functor
®" : R-Mod — R-Mod as follows: if M € R-Mod, then

®"(M) := M ®r ¢} R, (9)
where the R-module structure of ®" (M) is defined to be
r-x=2mi®r-ri, if $=Zmi®rie<b"(M) and r € R.

For the Frobenius endomorphism the functors defined in Definition [6] are
known as Frobenius functors. They were first introduced in [32}, Definition 1.2].
Important properties of Frobenius functors were established in [32] and [I9].
The same proofs can be re-written for the functors ®" and will establish the
next proposition.

Proposition 16 Let R be a Noetherian local ring, and let ¢ be a local self-map

of R. The functor ®", n € N has the following properties:

a) ®" is a right-exact functor.

b) If R® is a finitely generated free module, then ®"(R®) = R*®.

c) Let R®* 5 R! be a map of finitely generated free R-modules. Choose bases
Bs and By for R® and R', and let (a;;) be the matriz representation of
a in these bases. Then the matriz representation of ®"(a) in the bases of
O™ (R?®) and ®"(R?) obtained from B and B, by applying the isomorphism
of part b) is (¢"(asj)).

d) If a is an ideal of R, then ®"(R/a) = R/¢™(a)R, as R-modules.

e) If M is an R-module of finite length, then ®"(M) is an R-module of finite
length, and Lr(P"(M)) < Lr(M) - A(¢™).

Proof As mentioned above, parts a) to d) are standard. Part e) is restatement
of Proposition [4] in terms of ®".

Proposition 17 Let (R, ) be a local algebraic dynamical system. If M is a
nonzero module of finite length, then

1
halg((p7 R) = lim —- 1ong((I)n(M))
n—aL n
Proof By Proposition [L6}d, ®"(R/m) = R/¢"™(m)R. Thus,

(r(®"(R/m)) = Lr(R/¢"(m)R) = AM¢").

Since M is of finite length, there is a surjection M — R/m — 0. Apply
the functor ®" to obtain a surjection ®"(M) — ®"(R/m) — 0. Using this
surjection and by Propositiob [I6}e

A(p") = Lr(®"(R/m)) < Lr(®"(M)) < AM¢") - Lr(M).
The result follows after applying logarithm, dividing by n and letting n — oo.
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Proposition 18 Let (R,m, ) be a local algebraic dynamical system. Assume
p(m)R # m. Then

.1
lim — -loglp (m/@n(m)R) = halg(@a R)

n—ow N

Proof From the exact sequence: 0 —» m/¢"(m)R — R/p"(m)R - R/m — 0,

{r (m/9"(m)R) = £ (R/"(m)R) — L (R/m)
= (r (R/o"(m)R) — 1.

Since p(m)R # m, A\(p") = Lg (R/¢™(m)R) = 2. Thus

5 A SAE") — 1= lr (m/p" (M) < A",

Apply logarithm, divide by n and let n approach infinity.

2 Regularity and contracting self-maps

Our main objective in this section is to give a proof of Theorems [2] and
Let (R,m) be a Noetherian local ring of positive prime characteristic p and
of dimension d, and let ¢ be the Frobenius endomorphism of R. In [23] Kunz
showed that the following conditions are equivalent:

a) R is regular.

b) ¢ is flat.

c) M) = p.

d) AMe™) = p™? for some n € N.

Later Rodicio showed in [33], that these conditions are also equivalent to

e) flat dimp ¢, R < 0.

At first glance, Kunz’ conditions c) and d) appear to be stated in terms of
the characteristic p of the ring and one may not expect to be able to extend,
or even state them in arbitrary characteristic. Nevertheless, algebraic entropy
can be used to make sense of Kunz’ numerical conditions ¢) and d) for all
self-maps of finite length in any characteristic. Theorem [2] states that with
this new interpretation, all conditions in Kunz’ result are still equivalent.

We should also note that in [4, Theorem 13.3] Avramov, Iyengar and Miller
have extended the equivalence of conditions a) and b) of Kunz and e) of Rodi-
cio to contracting local self-maps of Noetherian local rings in all characteristics.

We list two results here that we will need in our proof of Theorem [2}

Lemma 8 ([19, Lemma 3.2]) Let (R,m) be a Noetherian local ring, and let
M be a finitely generated R-module. Consider an ideal b € m of R. Then there
exists an integer po = 0 such that depth(m, b#M) > 0 for all p = uo.
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Remark 8 Lemma [8|must be used together with the standard convention that
the depth of the zero module is o (see, for example, [20, p. 291]). Otherwise,
if M is an R-module of finite length, then for 1 » 0 we have m#M = (0), and
this would have been a counter-example to Lemma

The next proposition is taken from [8, Chap. 10, § 1, Proposition 1].

Proposition 19 Let R be a Noetherian ring and let a be an ideal of R. Let
0> M —- M — M" — 0 be an exact sequence of R-modules. If we define
d" = depth(a, M'), d = depth(a, M), and d” = depth(a, M"), then one of the
following mutually exclusive possibilities hold:

d=d<d"ord=d"<d ord"=d —1<d.

2.1 Kunz’ Regularity Criterion via algebraic entropy

In order to prove Theorem [2 we first need to establish two lemmas. We begin
with a flatness criterion that is due to Nagata. A proof can be found in [30,
Chap. II, Theorem 19.1]. See also [27, Ex. 22.1, p. 178].

Theorem 5 (Nagata) Let g : (R, m) — (S,n) be an injective homomorphism
of finite length of Noetherian local rings. Then S is flat over R, if and only if
for every m-primary ideal q of R,

Cr(R/q) - Ls(S/g(m)S) = £s(5/9(a)S). (10)

We need a stronger version of Nagata’s theorem that we state and prove here.

Lemma 9 Let g : (R,m) — (S,n) be a homomorphism of finite length of
Noetherian local Tings. If Equation holds for a family of m-primary ideals
{qataeca that define the m-adic topology, then it holds for all m-primary ideals.

Proof Let q be an m-primary ideal. We will show Equation holds for q.
First, using Proposition [4]

l5(S/g(q)S) = £s(S ®r R/q) < Ag) - {r(R/q).

To show the reverse inequality, note that by assumption there is a q,, S q. The
exact sequence 0 — q/qo — R/qo — R/q — 0 yields

(r(R/9a) = (r(R/q) + Lr(a/da)- (11)

If we tensor the previous exact sequence with S, we obtain an exact sequence
of S-modules q/qq ®r S — S/9(qa)S — S/g(q)S — 0. Thus

ls(5/9(4a)S) < €s(5/9(a)S) + Ls(d/da ®r S).
Since Equation [I0] holds for g, and by using Proposition [] we quickly see

(r(R/4a) - Mg) < £s(5/9(a)S) + Lr(d/daa) - AMg)-
Now using Equation [11] we quickly obtain A(g) - ¢r(R/q) < £s(S/9(q)S).
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Lemma 10 Let (R, m, ) be a local algebraic dynamical system, and let a be

a @-invariant ideal of R. Let @ be the self-map of R/a induced by ¢. Set

d:=dim R and d := dim R/a and let q(p) be as defined in Theorem |2.

i) If M¢™) = q(¢)™? for some n € N, then M\(¢™) = q(p)™? for all t € N.

ii) If in addition to the assumption in i) we have hag(@, R/a) = hag(p, R)
and if ¢ is contracting, then a = (0).

Proof i) Let t € N. As the sequence {log A(¢™")/(nt)} converges to its infimum
by Theorem

haig(, R) < log A(¢™)/(nt).
From this inequality we quickly obtain g()™¢ < A(¢™). Also, by Corollary
A(p™) < A(p™)". Using assumption i) and the previous inequalities we obtain

q(9)™ < Me™) < AMg™)! = qlp)™.

Hence, A(¢™) = q(¢)™* for all ¢t € N.
ii) Similar to the previous part, we can write

4@ < AF™) < M) = ¢t (12)

From assumption ii) it follows ¢(@)? = ¢(¢)?. Then from Equation |12| we
conclude A\(@"") = A(p™) for all t € N. Since A\(@"™) = Lr(R/[¢™(m)R + a])
by Proposition [3 we obtain

tr(R/["™ (m)R + a]) = (r(R/o™ (m)R), VteN. (13)

The surjection R/¢™(m)R — R/[¢™(m)R + a]) — 0 and Equation [13| then
show
R/[¢™(m)R + a] = R/¢™(m)R, VteN.

Hence,
a C (Ney " (m)R = (0),

where the last equality follows from Remark [1| because ¢ is by assumption,
contracting.

Proof (of Theorem @) a) = b): To say that ¢ is of finite length means
dim R/p(m)R = 0. Hence, the following equation holds:

dim R = dim R + dim R/p(m)R.

Since R is regular, the result follows from [27, Theorem 23.1].

b) = c¢): This follows from Corollary Since ¢ is flat by assumption, by that

corollary A(¢™) = A(p)" for all n € N . Thus, by definition of algebraic entropy
haig(p, R) = lim (1/n) - log A(¢")

n—ao0

= lim (1/n) - log A(¢)"™

n—ao0

= log A(¢).
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This means A(p) = q(p)%.

c) = d): This is clear.

b) = a): We use Herzog’s proof in [19, Satz 3.1]. We re-write it for an arbitrary
self-map here. See also [9, Lemma 3]. To show that R is regular, it suffices to
show all finitely generated R-modules have finite projective dimension. So let
M be a finitely generated R-module. Suppose M were of infinite projective
dimension. Consider a minimal (infinite) free resolution of M

L,—> M —0.

Let s := depth(m, R), and take an R-regular sequence of elements {x1,...,z4}
in m. Write a for the ideal generated by this regular sequence. (If s = 0, take
a = (0).) Let ®" be the functor defined in Definition [} For every n € N we set

Cy =" (L,) ®r R/a and Bj :=image(Cj,; — C}").

Using Proposition b, we quickly see that C" = L;/aL;. This shows that
C7 is independent of n, and that C}* is a nonzero finitely generated module of
depth zero for all ¢. Using Proposition c7 we can see that Bl' € ¢"(m)CP.
Applying Lemma [8] let u;, be such that depth(m, m*ioC?) > 0. Since ¢ is
contracting by assumption, from Remark [I] it easily follows that if n is large
enough, then ¢"(m)R € m*o and in that case, B € ¢"(m)C!" € mtioCP.
This shows that depth(m, B*) > 0 for large n. On the other hand, since ¢ is
flat, ®"(L,) is exact. Thus, by parts a), b), and ¢) of Proposition

®"(L,) = d"(M) -0
is a minial (infinite) free resolution of ®"(M). Hence
H;(C™) = Torf(®"(M), R/a) = 0, for i> s.
This shows that if 4 > s, then the sequences
0— By = Ciiy— B! =0 (14)

are exact for all n € N. Take ¢ = s 4+ 1 in Sequence [I4] for instance. By the
above argument, if we take n large enough, we will obtain depth(m, B}, ;) > 0
and depth(m, Bl 5) > 0, while depth(m, C7,,) = 0. By Proposition [19| this is
not possible. Hence, the projective dimension of M must be finite.
d) = b): We will use Nagata’s Flatness Theorem to show that ¢™ is flat.
We first need to show that ¢ is injective. Clearly ker ¢ is ¢-invariant. Let
@ be the local self-map induced by ¢ on R/ker¢. Then by Proposition
Ralg (0, R) = haig (7, R/ ker ). By assumption, A\(¢") = g(¢)"¢ for some n € N.
From Lemma [10]it follows that ker ¢ = (0).

Now since ¢ is contracting, using Remark [1| we quickly see that the family
{p™(m)R}ten defines the m-adic topology of R. By Lemma |§| it suffices to
verify Equation [10] for this family of m-primary ideals. We need to show

Cr(B/e" (™ (m)R) = Lr(R/¢™ (m)R) - (r(R/¢" (m)R).
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This equation translates into A(@™*+1)) = X(p"™) - A(¢"). Using Lemma
this equality holds, if and only if

)n(t+1)d _ (

q (p)ntd A

)nd.

q(p q(p

Since this equality holds trivially, by Nagata’s Flatness Theorem ™ is flat.
The implication b = a) of Theorem [2| applied to ¢™ then tells us that R is
regular, and the implication a = b) of the same theorem shows that ¢ is flat,
as well.

2.2 Generalized Hilbert-Kunz multiplicity

Following ideas of Kunz, Monsky in [29] defined the Hilbert-Kunz multiplicity
for the Frobenius endomorphism of Noetherian local rings of positive prime
characteristic. He then showed that in this case, Hilbert-Kunz multiplicity
always exists. Since then, it has become evident through works of various
authors, that the Hilbert-Kunz multiplicity provides a reasonable measure of
the singularity of the local ring. Here, inspired by part c¢) of Theorem [1} we
propose a characteristic-free interpretation of the definition of Hilbert-Kunz
multiplicity associated with a self-map of finite length.

Definition 7 (Hilbert-Kunz multiplicity) Let (R, ) be a local algebraic
dynamical system and set d := dim R. Let ¢(¢) := exp(haig(p, R)/d). The
Hilbert-Kunz multiplicity of R with respect to ¢ is defined as

enk (p, R) := lim (15)

n—x q(e)"t’

provided that the limit exists.

Remark 9 We do not know whether the limit in Equation [I5] always exists or
not. Nevertheless, the next corollary shows that in the case of a regular local
ring the Hilbert-Kunz multiplicity is precisely what we expect it to be.

Corollary 17 Let ¢ be a self-map of finite length of a regular local ring R.
Then epk (¢, R) = 1.

Proof This quickly follows from Theorem [2| and Corollary

We end this section with a note that not all homological properties of the
Frobenius endomorphism extend to arbitrary self-maps. For example, in [32,
Theorem 1.7, p. 58] Peskine and Szpiro showed that a finite free resolution of a
module remains exact after applying the Frobenius functor (see Definition @
This property may fail in general, for an arbitrary self-map, even in the simple
case of a Koszul complex with one element. The image of a non-zerodivisor
under an integral self-map could be a zerodivisor, as the next example shows.
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Ezample 7 Consider the polynomial ring k[x,y, z, w] over a field k. Let a be
the ideal (22, vy, 22, 2w) and let A = k[z,vy, z,w]/a. Then

Ass(A) = {(z, 2), (z,w), (z,y,2)}.

2. L
bl

Define a self-map ¢ of k[z, y, z, w] as follows = Sl oy oy 25w w2
a is p-invariant. Let 3 be the self-map of A induced by ¢. The A-module g, A
is finitely generated. In fact, it is generated by 1 and x as an A-module. Now,
Yy + w is not a zerodivisor in A because it does not belong to any prime ideal
in Ass(A). But ¢(y + w) = y + z is a zerodivisor in A; it is killed by z, for
example. On the other hand, y + z is a zerodivisor but is mapped to y + w, a
non-zerodivisor.

Nonetheless, in the previous example %2 sends any A-regular sequence to an
A-regular sequence. This motivates the following

Question 1 Let (R, ) be a local algebraic dynamical system. Does there exist
a positive integer n such that ¢™ will send any R-regular sequence to an R-
regular sequence?

2.3 The Cohen-Fakhruddin Structure Theorem

In this section we will prove Theorem [3] This theorem is inspired by a result of
Fakhruddin on lifting polarized self-maps of projective varieties to an ambient
projective space. In [I1], Corollary 2.2] Fakhruddin showed that given a self-
map ¢ of a projective variety X over an infinite field K and an ample line
bundle £ on X with ¢*(£) = £L®9 for some ¢ > 1 (polarized condition), there
exists an embedding 2 of X in some IP%, given by an appropriate tensor power
LO™ of £, and a self-map 1) of P¥ such that 1) 02 =20 ¢. In [5, Theorem 1]
Szpiro and Bhatnagar relaxed some of Fakhruddin’s hypotheses and showed
that one can keep the same embedding of X given by L, and instead lift an
appropriate power " of the self-map to the ambient projective space.

In this section we will consider the analogous lifting problem for self-maps
of of finite length of complete Noetherian local rings of equal characteristic.
Theorem states that if (A, ¢) is a local algebraic dynamical system with A a
homomorphic image 7 : R — A of a complete equicharacteristic regular local
ring R, then there exists a (non unique) self-map of finite length v of R, such
that 7 : (R,%) — (A4, ¢) is a morphism of local algebraic dynamical systems.
As an improvement over Fakhruddin’s result, we do not assume our fields to
be infinite.

We begin with a few preparatory results that will be needed in the proof
of Theorem [

Definition 8 ([35, p. 159]) In a Noetherian local ring R of dimension d
and of embedding dimension e, a system of parameters {1, ..., x4} is called
a strong system of parameters if it is part of a minimal set of generators
{1,...,24,...,2c} of the maximal ideal.
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Lemma 11 A Noetherian local ring (R, m) has strong systems of parameters.

Proof Let k be the residue field of R, e the embedding dimension of R, and
d = dim R. If d = 0 then the statement holds trivially, since every system of
parameters is empty. So we assume d > 0. We will use the Prime Avoidance
Lemma [26] p. 2] to construct a strong system of parameters inductively. It

suffices to construct a sequence of elements x1,...,xs € m such that
a) dim R/ (z1,...,x;) =d —1i, for 1 <i < d, and
b) the images of x1,...,z4 in m/m? are linearly independent over k.

To choose x1, let {p1,...,p:} be the set of minimal prime ideals of R with the
property dim R/p; = d. By the Avoidance Lemma we can choose an element

zlem\(m2up1u...upt).

Then dim R/ (z1) = d — 1 and the image of z; in m/m? is linearly indepen-
dent over k. Now let r — 1 < d and suppose we have chosen a sequence of
elements z1,...,2,—1 in m with desired properties a) and b). To choose the
next element z,., let {q1,...,qs} be the set of minimal associated prime ideals
of R/(x1,...,2,_1) that satisfy dim R/q; =d—r+1. Since r —1 <d < e, we
cannot have m = m? + (z1,...,z,_1). Hence, by the Avoidance Lemma there
is an element

zrem\ (m® + (T1,..., 1) UL U ... UGy) .

Then dim R/ (x1,...,2,) = d—r. To complete the proof we need to show that
the images Ty, ...,T, of r1,..., 7, in m/m? are linearly independent over k. If
not, then since by induction hypothesis Z1,...,Z,._1 are linearly independent
over k, we must have a dependence relation of the form

Q1T+ ..+ Q1T — Ty = 0

in m/m?, with a; € k. Thus, if for 1 < i < r — 1 we choose elements a; € R
such that they map to «; in R/m, then ajz1 + ... + ap_12,—1 — 2, € m?, or
2, €m? + (x1,...,2,_1). This contradicts the choice of z,.. Thus, the images
of z1,..., 2, in m/m? must be linearly independent over k.

Lemma 12 Let (R,m) be a complete local ring of equal characteristic and
assume that A is a homomorphic image w : R — A of R. If K is a subfield of
A, then there is a subfield L of R such that 7|p, : L — K is an isomorphism.

Proof Let B = 77 !(K). Then B is a local subring of R with maximal ideal
q = 7 1(0). Note that q = ker 7 as subsets of R. Since B/q =~ K, B is also
of equal characteristic. In general B need not be Noetherian. We claim that
B € R is a closed subset in the m-adic topology of R. To see this, let n be
the maximal ideal of A and note that the topology induced from the n-adic
topology of A on any subfield of A is the discrete topology. Therefore, any
subfield of A is complete with respect to the topology induced from A, and
hence is closed in A. Since 7 is a continuous map and B = 7 (K), the claim
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follows. In particular, B is complete with respect to the topology induced from
the m-adic topology of R.

Denote the g-adic completion of B by B Since B is a local subring of
R and R is complete, we obtain a map ¢ : B - R, where i : B — R is the
inclusion homomorphism. Furthermore, since B is complete with respect to the
topology induced from the m-adic topology of R, we see that z( ) = B. Let
L’ be a coefficient field of B (For the existence of coefficient fields in complete
local rings that are not necessarily Noetherian, see [30, Theorem 31.1], or [27]
Theorem 28.3] or [14, Corollary 2]). Let L := i(L'). Then L is subfield of B
that is isomorphic to L'. Furthermore, the following diagram is commutative,
and shows that 7|y, : L — K is an isomorphism.

I« B B > L
Nl

Proof (of Theorem @ Let K be an arbitrary coefficient field of R. Then
¢ (r(K)) is a subfield of A, and can be lifted to a subfield L of R, by Lemma[12]
in such a way that 7| : L — ¢ (7(K)) is an isomorphism. We will use L at the
end of our proof to construct the self-map 1 of R. Let d = dim A and let e be
the embedding dimension of A. By Lemma [11| we can choose a strong system

of parameters {x1,...,zq4} of A which is part of a minimal set of generators
{x1,...,24,...,2e} of n. Choose elements X7,..., X, in m in such a way that
T (Xz) =x; for each 7. We claim that since the images of x1, ..., z. in n/n? are

linearly independent over A/n, the images X1,..., X, of X1,..., X, in m/m?
are also linearly independent over R/m. If not, there will be a dependence
relation a3 X1 + ... + a. X, = 0 with a; € R/m not all zero. This means if we
choose a; € R buch that they map to o; in R/m for 1 < i < e, then

a1 X1+ ... +aeXe e m?.

If we apply 7 to this relation, we obtain m(a;)xy +...+7(a.)z. € n%. But then
the image in n/n? would provide a nontrivial dependence relation

m(a1)T1 + ... + 7(ae)T. =0,

contradicting the linear independence of 71, . . ., T, in n/n? over A/n Our claim
follows. Hence, we can extend {X1,..., X} to a basis {X1,...,Xe,..., Xpn}
of m/m? over R/m, where n = dim R. If we choose elements X; € m such that
they map to X; in m/m? for e + 1 < i < n, then by Nakayama’s Lemma
{X1,...,X,} is a minimal set of generators of m. Furthermore, it follows from
the Cohen Structure Theorem that R = K[X7,...,X,].

Now consider elements ¢ (7(X;)) in A and for 1 < i < d choose f; € m such

that 7(f;) = ¢ (7(X;)). We claim that the ideal {fi,..., f4) of R has height
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d. First, by Krull’s Theorem ht (f1,..., f4) < d. For inequality in the other
direction, we show the ideal b := (p(7(X1)),...,¢ (7(Xy))) is n-primary.
This follows from Proposition [1| because ¢ is of finite length and {z1,...,z4}
is a system of parameters of A. Hence the ideal 7=1(b) = (f1,..., f4) + ker7
is m-primary in R. Since R is regular, by Serre’s Intersection Theorem [36,
Chap. V, Theorem 1]

dim R/ kerm + dim R/ (f1,..., fa) < dim R,

or, d+dim R/ {f1,..., fa) < n. But dim R/ {f1,..., fa) = n—ht{f1,..., fa)
as R is regular. We obtain ht (f1,..., f4) = d and our claim follows.

Next, we will choose elements fqy1, ..., fn € m inductively, making sure at
each step that 7(f;) = p(m(X:)) and that dim R/ (f1,..., ft) = n —t. Assume
d <t < n and that fi,...f; have been chosen with desired properties. To
choose f;11 we use the coset version of the Prime Avoidance Lemma due to
E. Davis (see [2I, Theorem 124] or [27, Exercise 16.8]), that can be stated as
follows: let I be an ideal of a commutative ring R and x € R be an element.
Let py,...,ps be prime ideals of R none of which contain I. Then

Choose an element u € m such that 7(u) = ¢ (7(X¢11)). If
dim R/ (f1,... fr,u) =n—t—1,

then set fiy1 = u. If not, let {py,...,ps} be the set of minimal associated
prime ideals of R/{f1,..., f:) that satisfy dim R/p; = dim R/ (f1,..., ft).
Since (f1,..., ft) + ker7 is an m-primary ideal in R, none of these p;’s can
contain ker 7w. Therefore by the coset version of the Prime Avoidance Lemma
there exists an element a € ker 7 such that

u+a¢ Ui pi

Setting fi+1 = v+ a we see dim R/ (f1,..., fiy1) =n—t —1 and @ (fr4+1) =
@ (m(Xi11)), as desired. After choosing {fi,..., fn} as described, we define
a selfmap ¢ of R = K[Xy,...,X,] as follows. For each 1 < i < n, we
define ¥(X;) to be f; and for every element « of K we define () to be
(7]2) " (¢ (w(a))). Then we extend the definition of ¢ to all elements of R
by continuity. Since ¥(m)R = (f1, -+, f,) is m-primary by construction of
the f;’s, ¥ is of finite length. Moreover, it is clear from the construction that
pom = mwo1, that is, 7 : (R,¢) — (A, ) is a morphism of local algebraic
dynamical systems.

Corollary 18 If in Theorem[3 ¢ is finite, then so is 1.

Proof This follows from [10, Theorem 8]: a local homomorphism f : S — T of
complete Noetherian local rings is finite if and only if f is of finite length, and
[f« k7 : ks] is a finite (algebraic) field extension, where kg and kr are residue
fields of S and T'.
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Remark 10 Let X be a projective variety over a field K with a self-map ¢, and
let £ be an ample line bundle on X such that ¢*(£) =~ £®9 for some q > 1.
Then some appropriate tensor power £L&™ of L is very ample and can be used to
embed X in some projective space P¥, realizing X as Proj K[Xi,---,Xn]/a
for some graded ideal a. Let

m: K[X1,...,Xn] = K[X1,--- , Xn]/a

be the canonical surjection, m = (X7,--- , Xy) and mx = (7(X1), - ,7(Xn))
be the corresponding irrelevant maximal ideals. Then ¢ will induce a graded K-
self-map of finite length of K[Xy,---, Xy]/a, which we will also denote by ¢.
The proof of Theorem [3|can be re-written in this setting, keeping careful track
of grading, to lift ¢ to a graded K-self-map of finite length ¢ of K[X1,..., Xn].
This shows the assumption in [II, Corollary 2.2], that K is infinite can be
avoided.
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ALMOST NEWTON, SOMETIMES LATTES

BENJAMIN HUTZ AND LUCIEN SZPIRO

1. INTRODUCTION

Given a morphism ¢ : P! — P! we can iterate ¢ to create a (discrete) dynamical system. We
denote the n'h iterate of ¢ as ¢" = ¢(¢" ). Calculus students are exposed to dynamical systems
through the iterated root finding method known as Newton’s Method where given a differentiable
function f(z) and an initial point zy one constructs the sequence

f(wn)

In general, this sequence converges to a root of f(x). In terms of dynamics, we would say that the
roots of f(x) are attracting fixed points of ¢(z). More generally, one says that P is a periodic point
of period n for ¢ if ¢"(P) = P.

A common example of a dynamical system with periodic points is to take an endomorphism of
an elliptic curve [m] : E — E and project onto the first coordinate. This construction induces a
map on P! called a Lattés map, and for m € Z its degree is m? and its periodic points are the
torsion points of the elliptic curve.

Denote Homy as the set of degree d morphisms on P!. There is a natural action on P! by PGL;
through conjugation that induces an action on Homg. We take the quotient as My = Homy / PGLo.
By [6], the moduli space My is a geometric quotient. We say that v € PGLg is an automorphism
of ¢ € Homy if y~! o ¢ oy = ¢. We denote the (finite [4]) group of automorphisms as Aut(¢).

In this note, we examine a family of morphisms on P! with connections to Newton’s method,
Lattes maps, and automorphisms. Let K be a number field and F' € K[X,Y] be a homogeneous
polynomial of degree d with distinct roots. Define

¢r(X,Y) = [Fy, —Fx] : P = PL.

Tn4+1 = ¢(xn) =Tn —

In Section 2 we examine the dynamical properties of these maps.

Theorem. The fized points of ¢p(X,Y) are the solutions to F(X,Y) = 0, and the multipliers of
the fixed points are 1 — d.

Theorem. The family of maps of the form ¢rp = (Fy,—Fx) : P! — P! is invariant under the
conjugation action by PGLa.

We also give a description of the higher order periodic points and a recursive definition of the
polynomial whose roots are the n-periodic points. We also examine related, more general Newton-
Raphson maps and, finally, recall the connection to invariant theory and maps with automorphisms.

In Section 3 we explore the connection with Lattés maps.

Theorem. Maps of the form

SN i
M=)

are the Lattés maps from multiplication by [2] and f(x) = [[(z — ;) where x; are the x-coordinates
of the 3-torsion points.

1



Finally, when E has complex multiplication (m ¢ Z) the associated ¢ can have a non-trivial
automorphism group.

Theorem. If E has Aut(E) 2 Z/2Z and the zeros of F(X,Y) are torsion points of E, then an
induced map ¢r has a non-trivial automorphism group.

2. ALMOST NEWTON MAPS

Let K be a field and consider a two variable homogeneous polynomial FI(X,Y) € K[X,Y] of
degree d with no multiple roots. Consider the degree d — 1 map

ép Pt —» P!
(Xv Y) = (FY(X7Y)7 _FX(Xv Y))

In particular, F'x = Fy = 0 has no nonzero solutions and so ¢ is a morphism. We will make fre-
quent use of the Euler relation for homogeneous polynomials, so we recall it here for the convenience
of the reader.

Lemma 1 (Euler Relation). Let F(X1,...,X,) be a homogeneous polynomial of degree d, then
OF
X,—— =dF.
2o

Label z = % and consider

F(X,Y
oy = D51
and notice that
, Fx(X,Y
Pl = XY
Lemma 2. The map induced on affine space by ¢ is given by
TN f(z)
pre) == )
Proof.
o) = S X,Y) T Y Fx(X,Y) YFx(X,Y) — T Yy

O

Definition 3. Let ¢ = (¢1,$2) : P! — P! be a rational map on P'. Define Res(¢) = Res(¢1, ¢2),
the resultant of the coordinate functions of ¢. For a homogeneous polynomial F', denote Disc(F')
for the discriminant of F.

Proposition 4. Let F(X,Y) be a homogeneous polynomial of degree d with no multiple roots.
Then,

Res(¢p(X,Y)) = (=1)U=1/2¢4=2 Disc(F(X,Y)).
Proof. Denote F(X,Y) = ag X4+ ag 1 XY + -+ apY?. Then we have
Fx(X)Y) =dagX* '+ -+ a, V!

Fy(X,Y) =ag 1 X 4 4 dagY9L.
2



From standard properties of resultants and discriminants we have
agD(F(X,Y)) = (-1)¥4-D2R(F(X,Y), Fx(X,Y))

= (—1)dd=1/2 (ddl)l R(AF(X,Y),—Fx(X,Y))
— (a2 D R X E (X, Y) 4 Y P (X V), ~Fx (X))

= (—1)Ud— 1)/2( ) R(YFy(X,Y),-Fx(X,Y)).

Now we see that

0 ag—1 2ad_2 s da1 0

0 0 ag—1 2a4_9 -+ daq
R(YFY’ _FX) - —dad —(d — 1)ad_1 ce —aq 0 0

0 —dad —(d — 1)ad_1 s —aq 0

Expanding down the first column we have

ag—1 2ad_2 tee dal 0 0

0 ag—1 2a4_9 -+~ da; O

R(YFy(X,Y),—Fx(X,Y)) = _dan(_l)d+l —C.iad _(d_l)ad—l —ay O 0
0 —day —(d—-1)ag—1 -+ —a; O

= dag(—1)"R(Fy(X,Y), —Fx(X,Y)).
Thus, we compute

eaD(F(X. 7)) = ()02 C ey b (), P (%, 7))

= (_1) d(d— 1)/2(dd1)1d( 1)d+2danR(Fy(X,Y),—Fx(X,Y))

= (—1)%d- 1)/2dad R(Fy(X,Y),—Fx(X,Y)).

O

Definition 5. Let P be a periodic point of period n for QNS, then the multiplier at P is the value
(¢™)(P). If P is the point at infinity, then we can compute the multiplier by first changing
coordinates.

Theorem 6. The fized points of ¢rp(X,Y) are the solutions to F(X,Y) = 0, and the multipliers
of the fized points are 1 — d.

Proof. The projective equality
¢(X7 Y) - (X7 Y)
is equivalent to
YFy(X,)Y)=-XFx(X,Y).
Using the Euler relation with then have
XFx(X,)Y)+YFy(X,Y)=dF(X,Y)=0.
3



Since d is a nonzero integer the fixed points satisfy F'(X,Y) = 0.
To calculate the multipliers, we first examine the affine fixed points. We take a derivative
evaluated at a fixed point to see
o) -1 gl @@ @) e
(f'(x))? (f'(x))?
If a fixed point has multiplier one, then it would have multiplicity at least 2 and, hence, would be
at least a double root of F. Since F' has no multiple roots, every multiplier is not equal to one.

Thus, to see that the multiplier at infinity (when it is fixed) is also 1 — d we may use the relation
[7, Theorem 1.14]

1
1 = 1.
M) >

]

Remark. If char K | d, then ¢ is the identity map. Let F(X,Y) = ag X +ag_1 X 1Y +- - -+agY%
Then we have

Fx(X,Y)=(d—1)ag 1 XYW +---a V' =Y((d - 1)ag 1 X+ a1 YT7?)

Fy(X,Y)=aq 1 X 4+ 4 (d—1D)a1Y2X = X(ag1 X4+ 4 (d— 1)a Y2).
Since —i = d — i (mod d) we have that

or(X,Y) = (Fy,—Fx) = (XP(X,Y),YP(X,Y)) = (X,Y),

where P(X,Y) is a homogeneous polynomial.

We next show that maps of the form ¢ form a family in the moduli space of dynamical systems.
In other words, for every v € PGLy and ¢, there exists a G(X,Y) such that v~ ! o ¢pr oy = ¢¢.
In fact, G(X,Y) is the polynomial resulting from allowing y~! to act on F.

Theorem 7. Every rational map ¢ : P1 — P! of degree d—1 whose fized points are {(a1,b1), ..., (aq,ba)}
all with multiplier (1 — d) is a map of the form ¢p(X,Y) = (Fy(X,Y),—Fx(X,Y)) for
F(X,Y) = (X — a1Y)(haX — asY) - (bgX — aqY).

Proof. Let (a1,b1),...,(ag,bq) be the collection of fixed points for the map % (X,Y) : P! — P!
whose multiplies are 1 — d. Then on A! we may write the map of degree d — 1 as

~ P(x)

o) = -

D= Q)

for some pair of polynomials P(z) and Q(z) with no common zeros. Let ¢p(x) be the affine map
associated to FI(X,Y) = (hX —a1Y) -+ (bgX — agY’) and we can write

- f(z)
—z—d
PP =5 = Ty
where FX.Y)
fla) = FEX),
The fixed points of 9(z) are the points where ggg = 0 and, hence, where P(z) = 0. The fixed

points of ¢(x) are the same as for ¢x(z), so we must have P(z) = cf(z) for some nonzero constant
c. Using the fact that the multipliers are 1 — d we get
- cf'Q — e’ cf’
PY()=1- """ =1— " =1—d.
@ @7 Q

4



Therefore we know that c

£ F(r) = Q)
where z1,...,74 are the fixed points (or x1,...,z4_1 if (1,0) € P! is a fixed point). Since f’(z)
and Q(x) are both degree d — 1 polynomials (or d — 2), so this is a system of d (or d — 1) equations
in the d (or d — 1) coefficients of Q(x). Since the values z; are distinct (since the multipliers are

# 1) the Vandermonde matrix is invertible and we get a unique solution for Q(z). In particular,
we must have

and thus

0

Corollary 8. The family of maps of the form ¢p(X,Y) = (Fy(X,Y),—Fx(X,Y)) : Pt — P! is in-
variant under the conjugation action by PGLa. In particular, the family of ¢r where deg F(X,Y) =
d is isomorphic to an arbitrary choice of d — 3 distinct points in PL.

Proof. Conjugation fixes the multipliers and moves the fixed points, so by Theorem 7 the conjugated
map is of the same form.

A map of degree d — 1 on P! has d fixed points. The action by PGLy can move any 3 distinct
points to any 3 distinct points. Thus, the choice of the remaining d — 3 fixed points determines

PF. O
2.1. Extended Example.

Proposition 9. Let F(X,Y) be a degree 4 homogeneous polynomial with no multiple roots with
associated morphism ¢p(X,Y). For any a € Q — {0,1} we have that ¢p(X,Y) is conjugate to a
map of the form

dra(X,Y) = (X3 - 2(a+ 1)X?Y +3aXY? —3X%Y 4+ 2(a + 1) XY? — aY?).
Proof. We can move three of the 4 fixed points to {0, 1,00} with an element of PGL5 and label the
fourth fixed point as a. Then we have
F(X,Y,a)=(X)(Y)(X -Y)(X —aY) = X3 — (a4 1)X?Y? + aXY?
and
ora(X,Y) = (Fy(X,Y,a), - Fx(X,Y,a))
= (X3 —2(a+1)X%Y 4+ 3aXY? —(3X%Y —2(a + 1) XY? 4 aY?)).

O

Proposition 10. Let F(X,Y) be a degree 4 homogeneous polynomial with no multiple roots with
associated morphism ¢p(X,Y). Assume that ¢p(X,Y) is in the form of Proposition 9. Then, the
two periodic points are of the form

{+Va,1+V1—a,a+ Va2 —a}U{0,1,00,a}
Proof. Direct computation. O
Proposition 11. Q-Rational affine two periodic points are parameterized by pythagorean triples.

Proof. The values a and 1 — a are both squares and 0 < o < 1. Thus, there are relatively prime

integers p and g so that a = % with p < gand 1 — a = q2q}p2. Therefore, so 72 + p?> = ¢* a

q
pythagorean triple, with 72 = (1 — a)¢?. O



Remark. The 2-periodic points are not the roots of f(gg(x)), see Theorem 13 for the general
relation.
For general F(X,Y), ¢%(X,Y) does not come from a homogeneous polynomial G.

2.2. Higher order periodic points. We set the following notation

d—1

fay = TE 3
=0
o4
e = — Bpy1(7)

Fx (An(2), Bn(x))
where A, (x) and By, (z) are polynomials and ¢, is a constant.

Definition 12. Let ¥, (z) be the polynomial whose zeros are affine n-periodic points.
The polynomial ¥, (z) is the equivalent of the n*™ division polynomial for elliptic curves, see 3,
Chapter 2] for information on division polynomials.

While it is possible, to define ¥,,(z) recursively, the relation is not as simple as for elliptic curves.
If we let Ug ,, be the m-division polynomial for an elliptic curve E, then

3 3
Vgom+1 = VYEm+2Vem — YEm-1VE ey form > 2

\VJ
Vg om = ( ZJ’”) (@E7m+2\I/2E’m,1 - \Inym_Q\Ile’mH) for m > 3.

Notice that these relations depend only on ¥ ,, for various m, whereas the formula in the following
theorem also involves iterates of the map.

Theorem 13. We have the following formulas

in _ \I’n(l‘)
" (r) =x+ dBn(l’)

and

with multipliers

I <1_d+d (¢1(x))f”() ¢'(x >>>.

11 (6 (@))
Proof. We proceed inductively. For n = 1 we know that the fixed points are the zeros of f(z).
- f(z) f(z) f(z) Uy (z)
= =x— =z — = d :
I e I v e = o) R T RN )
Now assume that
. 0,
O"(2) =7 +d Eg

6



Computing

@) FE)
@ =y Gy T @)
o g¥@ L F(An(2), Ba(2)
=THIE @) T YBu@)Fx(An(a), Ba(2))
_ o gFAn(@), Bu(2)) = Wn(2) Fx (An(x), Bu(x))
B, (z)Fx(An(x), By(x))
o dF(An(x), By (x)) — V() Fx(An(x), Bp(x))

So we have to show that By, (z) divides F/(A,(x), By (x)) =Yy, (z)Fx (An(x), Bn(x)). Working modulo
By, (x) we see that

F(An(x), Bp(z)) — U (2)Fx (An(2), By(z)) = An(2)? — (An(2)/d)dA, ()T =0 (mod By(z))

where we used the induction assumption for ¥, (z). Thus, the n-periodic points are among the
roots of W, ().

For equivalence, we count degrees. Again, proceeding inductively it is clear for n = 1. For n + 1
we have that

deg(F(Ap(x), By(z)) = d(d —1)" = (d — 1)""™ + (d - 1)"
and
deg(Un(2) Fx (An(), Bp(2))) < (d = 1)" + 14 (d — 1)"
depending on whether the point at infinity is periodic or not. Thus,
deg(Upi (@) <d—1D"+1+d—-1D)" —(d=1)" = (d—1)"" + 1.

Since the number of (projective) periodic points of ¢™ is (d — 1)™ + 1, every affine fixed point must
be a zero of ¥, (z).
We compute the multipliers as

oy —q gl @ = f@) @) @) f (@)
§a)=1-d o =1-d+d=—ges
n—1 n—1 i 73
() (G f(@' () f"(¢'(x))
z)) = z)) = —d+d = .
(¢"(z)) i:0¢(¢( ) 11 <1 e >

O

2.3. Replace d with r: Modified Newton-Raphson Iteration. We have considered maps of
the form

SR f(z)
or(e) = o= dg)
where d = deg(F(X,Y)). However, we could also consider affine maps of the form
T f(x)
(2) ¢(x) =T - rf/(l')

for some r # 0 and polynomial f(z). When used for iterated root finding, such maps are often
called the modified Newton-Raphson method. The fixed points are again the zeros of f(x) and are
7



all distinct with multipliers 1 —r. Thus, if deg f # r, then the point at infinity must also be a fixed
point by (1) with multiplier

di 1 _degf(x)+ 1 1
1— AZ' - T 1— )\OO N
_deg f(2)
7 deg f(x) — 1
These maps also form a family in the moduli space of dynamical systems and are determined by
their fixed points..

i=1

Theorem 14. Let r be a non-zero integer. Every rational map ¢ : P1 — P! of degree d — 1 which
has d — 1 affine fized points all with multiplier (1 — r) and fizes (1,0) with multiplier df;il s a
map of the form (2).

Proof. The method of proof is identical to the proof of Theorem 7, so is omitted. (|

Remark. Note that if we choose r = 1, then all of the affine fixed points are also critical points
(¢'(z) = 0) as noted in [1, Corollary 1].

2.4. Connection to Maps with Automorphisms. Let I' C PGLy be a finite group.

Definition 15. We say that a homogeneous polynomial F' is an invariant of I if F oy = x(v)F
for all ¥ € T and some character x of I'. The invariant ring of I' denoted K[X,Y]" is the set of all
invariants.

The following was known as early as [2, footnote p.345].

Theorem 16. If F(X,Y) is a homogeneous invariant of a finite group I' C PGLg, then I' C
Aut(¢p).

Proof. Easy application of the chain rule. O

3. CONNECTION TO LATTES MAPS

Consider an elliptic curve with Weierstrass equation E : y? = g(x) for g(z) = 23 + ax?® + bz + c.
The solutions g(x) = 0 are the 2-torsion points. If we integrate g(z) we get G(z) = z*/4+ a/32% +
b/2x? + cx + C for some constant C. If we let C = —(b? — 4ac)/12, then the solutions G(z) = 0
are the 3-torsion points. In general, there are polynomials Vg ,,(z) called the division polynomials
for E for which the solutions of Vg ,,(x) are the m-torsion points. See [3, Chapter 2] for more
information on division polynomials.

A Lattes map is a rational function on the first coordinate of the multiplication map [m] €
End(E) on the rational points of an elliptic curve E; ¢ m(z(P)) = x([m]). For integers m > 3 we
have

[ml(z,y) = (x

In other words, the induced Lattes map is given by

2 2
B \I/E,m—lll’E,m—i-l \IJE,m‘i‘Q\IIE,m—l - \IIE,m—Q\IIE,m—&-l
2 ’ 3 :

\I,E,m 4y\IlE,m

~ ¥Yem—1VEmtr
v,
Hence the fixed points of the Lattés maps are the x-coordinates of the m — 1 and m + 1 torsion

points. For m = 2, the fixed points are the 3 torsion points.
8

PEm(x) =2



Example 17. Given an elliptic curve of the form y? = g(x) = 23 + a2? + bx + c¢. The 2-torsion
points satisfy 2 = 0, so are fixed points of the map derived from homogenizing g(z).

F(X,Y)=X3+aX? +bXY? + XY3
or(X,Y) = (aX? 4 2bXY +3XY? —(2aX + bY?))

The fixed points of the doubling map are the points where x([2]P) = x(P), in other words, the
points of order 3. They are the points which satisfy the equation

Ups(z) = 32t + daz® + 6bx? 4 12¢cx + (dac — b*) = 2g(2)g" (z) — (¢ (x))?
So we have
F(X,Y)=3X"*+4aX3Y +6bX°Y? 4 12¢XY? + (4ac — b*)Y*!
or(X,Y) = (4aX3 +12bX%Y + 36cXY? + 4(4ac — b*)Y?3,
— (12X3 +12aX?Y +12bXY? + 12¢Y3)).
For m = 2 we get the following stronger connecting generalized ¢ and Lattés maps.

Theorem 18. Maps of the form

N
)=

are the Lattés maps from multiplication by [2] and f(z) = [[(x — x;) where x; are the x-coordinates
of the 3-torsion points.

Proof. From [7, Proposition 6.52] we have the multiplies are all —2 except at oo where it is 4 and
the fixed points are the 3 torsion points (plus co). Now apply Theorem 14. U

3.1. Complex Multiplication and Automorphisms. For an elliptic curve E, every automor-
phism is of the form (z, %) + (u?z, u3y) for some u € C* [5, II1.10]. In general, the only possibilities
are u = +1 and Aut(FE) = Z/2Z. However, in the case of complex multiplication End(F) 2 Z and
it is possible to contain additional roots of unity, thus having Aut(F) 2 Z/27Z. The two cases are
J(E) = 0,1728 having Aut(E) = Z/6Z,Z/4Z respectively [5, 111.10]. These additional automor-
phisms induce a linear action z — w2z which fixes a polynomial whose roots are torsion points.
Thus, the corresponding map ¢ has a non-trivial automorphism of the form

u? 0
<0 1) € PGLs.

Thus we have shown the following theorem.

Theorem 19. If E has Aut(E) D Z/27 and the zeros of F(X,Y) are torsion points of E, then an
induced map ¢r has a non-trivial automorphism group.

Example 20. Let E = y? = 23 + az, for a € Z, then j(E) = 1728 and End(E) contains the map
(z,y) = (—z,iy). Thus, the automorphism group of every ¢ coming from torsion points satisfies

(o 9)r c Autr

9
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VERY AMPLE POLARIZED SELF MAPS EXTEND TO
PROJECTIVE SPACE

ANUPAM BHATNAGAR AND LUCIEN SZPIRO

ABSTRACT. Let X be a projective variety defined over an infinite field,
equipped with a line bundle L, giving an embedding of X into P and
let ¢ : X — X be a morphism such that ¢*L = L®? ¢ > 2. Then there
exists an integer r > 0 extending ¢" to P™.

1. INTRODUCTION

Let X be a projective variety defined over an infinite field £ and ¢ a
finite self morphim of X. We say ¢ is polarized by a line bundle L on X if
¢*L = L®1 for ¢ > 1. We say that the polarization is very ample if the line
bundle L is very ample i.e. the morphism X — P(H?(X, L)) = P}" obtained
by evaluating the sections of L at points of X is a closed embedding ([4],
pp. 151). In this paper we show that there exists an integer r > 1 such that
¢" extends to a finite self map of P}', where X is embedded. We give an
example where r > 1 is required. Fakhruddin shows in ([3], Cor. 2.2) that ¢
itself can be extended provided one chooses carefully a different embedding
of X in projective space. Our proof and Fakhruddin’s proof are closely
related. We explain the differences and similarities in the proofs among the
two papers in the third remark at the end of this article.

Acknowledgements: We thank Laura DeMarco and Tom Tucker for their
suggestions in the preparation of the paper.

2. MAIN RESULT

Theorem 1. Let X be a projective variety defined over an infinite field k,
L a very ample line bundle on X and ¢ : X — X a polarized morphism.
Then there exists a positive integer r and a finite morphism + : P7* — P
extending ¢", where m + 1 = dimy H°(X, L).

Proof: Let dim(X) = g and let s, ..., s, be a basis of H*(X,L). Let
be the sheaf of ideals on P defining X. Then

Date: June 15, 2011, Keywords and Phrases: Arithmetic Dynamical Systems on Al-
gebraic Varieties. 2010 Mathematics Subject Classification. 37P55,37P30,14G99. Both
authors are partially supported by NSF Grants DMS-0854746 and DMS-0739346.

1



2 ANUPAM BHATNAGAR AND LUCIEN SZPIRO

is a short exact sequence of sheaves on P™. Tensoring (2) with Opm(n) and
taking cohomology we get the long exact sequence
0 — H°(P™,Z(n)) — H°(P™, Opm(n)) —
— H°(X,L®™) — H' (P™,Z(n)) — ...

By Serre’s vanishing theorem there exists ng depending on Z such that
H(P™ Z(n)) = 0 for each n > ng. Let {f;} be the set of homogeneous poly-
nomials defining X. Choose an integer r such that ¢" > max;{deg(f;),no}.
Since (¢")*L = L®9" (¢")*(s;) can be lifted to a homogeneous polynomial h;
of degree ¢” in the s;’s defined up to an element of HY(P™, Z(¢")). The poly-
nomials h;,0 < i < m define a rational map v : P™ --» P™. We show using
induction that if the h;’s are chosen appropriately, then ¢ is a morphism.

Let W; be the hypersurface defined by h;. We can choose s, ..., s, with
no common zeros on X, then each component (say Z) of N?_,W; has codi-
mension at most g + 1 since it is defined by ¢g + 1 equations. By ([4],
Thm 7.2, pp. 48), it follows that codim(Z) > g + 1. Suppose we have
ho,...,hj,0 < j < m such that each component of N/_,W; has codimen-
sion j + 1 and we want to choose hj;1. Let a1 be the lifting of (¢")*(s;+1)
to HO(P™, Opm(q")). If V() does not contain any of the components of
ﬂLOWi, then set hjy1 = ;. Otherwise we invoke the Prime Avoidance
Lemma which states:

Lemma 3. Let A be a ring and let p1, ..., Pm, q be ideals of A. Suppose that
all but possibly two of the p;’s are prime ideals. If q € p; for each i, then g
is not contained in the set theoretical union Up;.

Proof: [5], pp. 2. O

Taking A = k[so,...,sn],q9 = Z(q"), and p;’s the ideals corresponding to
the distinct components of N?_,W; we can choose az € H°(P™,Z(g")) such
that V(ap) does not contain any of the components of N/_,W;. Consider
the family of hypersurfaces V(acq + bag) with [a : b] € Pi. If @ = 0, then
the corresponding hypersurface does not contain any components of N_,W;.
Otherwise, since k is infinite there exists ¢ € k such that V(aj + cag) does
not contain any component of ﬂgZOWi. Let hjy1 = aq +cag. This concludes
the induction and the proof of the theorem. [J

We give an example of a self map of a rational quintic in P? that does not
extend to P3. This illustrates that the condition r > 1 in Theorem 1 is at
times necessary.

Proposition 4. Let u,v be the coordinates of C = P! embedded in P? with
coordinates (xg = u®,x1 = utv, 1y = wv*, 23 = v°). Then a self map ¢ of
C' of degree 2 defined by two homogeneous polynomials P(u,v) and Q(u,v)
does not extend to P? if P(u,v) = au® + buv + cv? with abe # 0.

Proof: Considering the restriction map H°(IP?, Ops (2)) — H°(P', Op:(10)).

The image of x%, x%, 1:%, x%, ToT1, Tox2, LT3, T1T2, T1X3, Toxy under this map
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is w9 uBv?, w20, 010, v, ubvt, uPvd, ut® uv?. Thus u'v? and wdv” are lin-

early independent. (Note that it is easy to find two quadratic equations for
(). One has the possible commutative diagram:

7

PILPI
P,k
PS_E>P3

The composition (io¢) is given by four homogeneous polynomials of degree
10, namely (P(u,v)?, P(u,v)*Q(u,v), P(u,v)Q(u,v)*, Q(u,v)’). If ¢ ex-
tended to a self map 1) of P3, some degree two homogeneous polynomial Fj in
the z;’s will restrict to (P(u,v)?, P(u,v)*Q(u,v), P(u,v)Q(u, v)*, Q(u,v)?)
on C, by substituting the expressions of the x; in (u,v). Since abc # 0 the
coefficients of u”v? and w3v” in P(u,v) are non-zero. So P(u,v)® is not in
the image of HO(IP3, Op3(2)) — H(PL, Op1(10)).

3. REMARKS

(1) If k is finite, ¢" extends to 1 if we allow 1) to be defined over a finite
extension of k. Indeed, applying the theorem to k(the algebraic
closure of k), v is defined by m + 1 polynomials in m + 1 variables
with coefficients in k. Hence 1 is defined over the finite extension of
k containing the finite set of coefficients of these polynomials.

(2) We say P € X is preperiodic for ¢ if ¢"™(P) = ¢™(P) for m >
n > 1. Denote the set of preperiodic points of the dynamical sys-
tem (X, L, ¢) by Prep(¢). It can be easily verified that Prep(¢) =
Prep(¢"). Thus from an algebraic dynamics perspective, we do not
lose any information by replacing ¢ by ¢". The same holds true for
points of canonical height [1] zero as well.

(3) One of the technical conditions required to extend ¢ from a self map
of X to a self map of P}" is that ¢*L = L® where s is larger than the
degrees of equations defining X. We choose to replace ¢ by ¢" and
fix L. The integer ¢ being at least 2 gives the result immediately.
On the other hand in ([3], Prop 2.1) Fakhruddin chooses to replace
L by L®" and keeps ¢ fixed. To finish the proof he uses a result
of Castelnuevo-Mumford ([6], Theorem 1 and 3), stating that if n is
large enough, X will be defined by equations of degree at most two
in P(H°(X, L®")).
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