Puiseux series dynamics and leading monomials of escape regions

Jan Kiwi
PUC, Chile

Workshop on Moduli Spaces Associated to Dynamical Systems
ICERM
Providence, April 17, 2012
Monic centered cubic polynomials with marked critical points:

\[f_{a,v} : z \mapsto (z - a)^2(z + 2a) + v \]

where \((a, v) \in \mathbb{C}^2\).

After identification of \((a, v)\) with \((-a, -v)\) one obtains the moduli space of cubic polynomials with marked critical points.

Critical points of \(f_{a,v}\) are \(\pm a\).

Critical value: \(v = f_{a,v}(a)\).

Co-critical value \(-2a\), since \(v = f_{a,v}(a) = f_{a,v}(-2a)\).
Parameter space

Monic centered cubic polynomials with marked critical points:

\[f_{a,v} : z \mapsto (z - a)^2(z + 2a) + v \]

where \((a, v) \in \mathbb{C}^2\).
Monic centered cubic polynomials with marked critical points:

\[f_{a,v} : z \mapsto (z - a)^2(z + 2a) + v \]

where \((a, v) \in \mathbb{C}^2\).

After identification of \((a, v)\) with \((-a, -v)\) one obtains the moduli space of cubic polynomials with marked critical points.
Monic centered cubic polynomials with marked critical points:

\[f_{a,v} : z \mapsto (z - a)^2(z + 2a) + v \]

where \((a, v) \in \mathbb{C}^2\).

After identification of \((a, v)\) with \((-a, -v)\) one obtains the moduli space of cubic polynomials with marked critical points.

Critical points of \(f_{a,v}\) are \(\pm a\).
Critical value: \(v = f_{a,v}(+a)\).
Co-critical value \(-2a\), since \(v = f_{a,v}(+a) = f_{a,v}(-2a)\).
For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.
For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.

$S_p \subset \mathbb{C}^2$ is a smooth affine algebraic curve of degree d_p where $\sum_{n|p} d_n = 3^{p-1}$.
Periodic Curves

For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.

$S_p \subset \mathbb{C}^2$ is a smooth affine algebraic curve of degree d_p where $\sum_{n|p} d_n = 3^{p-1}$.

What is its topology?
For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.

$S_p \subset \mathbb{C}^2$ is a smooth affine algebraic curve of degree d_p where $\sum_{n | p} d_n = 3^{p-1}$.

What is its topology? Is S_p irreducible?
Periodic Curves

For \(p \geq 1 \), the periodic curve \(S_p \) consists of all \((a, v)\) such that \(+a\) has period \(p \) under \(f_{a,v} \).

\[
S_p \subset \mathbb{C}^2 \text{ is a smooth affine algebraic curve of degree } d_p \text{ where } \sum_{n \mid p} d_n = 3^{p-1}.
\]

What is its topology? Is \(S_p \) irreducible?

Bonifant,-,Milnor: the Euler characteristic is \(S_p \) is \((2 - p)d_p\).
For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.

$S_p \subset \mathbb{C}^2$ is a smooth affine algebraic curve of degree d_p where $\sum_{n|p} d_n = 3^{p-1}$.

What is its topology? Is S_p irreducible?

Bonifant, Milnor: the Euler characteristic is S_p is $(2 - p)d_p$.

What is the Euler characteristic of the smooth compactification of S_p?
Periodic Curves

For $p \geq 1$, the periodic curve S_p consists of all (a, v) such that $+a$ has period p under $f_{a,v}$.

$$S_p \subset \mathbb{C}^2$$ is a smooth affine algebraic curve of degree d_p where

$$\sum_{n \mid p} d_n = 3^{p-1}.$$

What is its topology? Is S_p irreducible?

Bonifant, Milnor: the Euler characteristic is S_p is $(2 - p)d_p$.

What is the Euler characteristic of the smooth compactification of S_p?

Requires to compute the number N_p of “escape regions”. (De Marco and Schiff, De Marco-Pilgrim).
Escape Regions

The connectedness locus

\[C(S_p) = \{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \not\to \infty \} \]

is compact.

The escape locus

\[E(S_p) = \{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \to \infty \} \]

is open and every connected component is unbounded.

An escape region \(U \) is a connected component of \(E(S_p) \):

\(U \) is conformally isomorphic to punctured disk.

The puncture is at \(\infty \).
Escape Regions

The connectedness locus

\[C(S_p) = \left\{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \not\rightarrow \infty \right\} \]

is compact.

The escape locus

\[\mathcal{E}(S_p) = \left\{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \rightarrow \infty \right\} \]

is open and every connected component is unbounded.
The connectedness locus

\[C(S_p) = \left\{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \not\to \infty \right\} \]

is compact.

The escape locus

\[E(S_p) = \left\{ f_{a,v} \in S_p \mid f_{a,v}^n(-a) \to \infty \right\} \]

is open and every connected component is unbounded.

A escape region \(\mathcal{U} \) is a connected component of \(E(S_p) \):

\(\mathcal{U} \) is conformally isomorphic to punctured disk.

The puncture is at \(\infty_{\mathcal{U}} \).
Asymptotics of critical periodic orbit

For $f_{a,v} \in U$, let

$$a_0 = +a \mapsto a_1 = v \mapsto \cdots \mapsto a_{p-1} \mapsto a_0.$$
Asymptotics of critical periodic orbit

For $f_{a,v} \in \mathcal{U}$, let

$$a_0 = +a \mapsto a_1 = v \mapsto \cdots \mapsto a_{p-1} \mapsto a_0.$$

Dynamical space picture. After conjugacy, $f_{a,v}(az)/a$, we have:
Asymptotics of critical periodic orbit

For \(f_{a,v} \in U \), let

\[
a_0 = +a \leftrightarrow a_1 = v \leftrightarrow \cdots \leftrightarrow a_{p-1} \leftrightarrow a_0.
\]

Dynamical space picture. After conjugacy, \(f_{a,v}(a z)/a \), we have:

\[
a_j = \begin{cases}
 a + o(a) & \text{or} \\
 -2a + o(a).
\end{cases}
\]
Asymptotics of critical periodic orbit

For $f_{a,v} \in U$, let

$$a_0 = +a \mapsto a_1 = v \mapsto \cdots \mapsto a_{p-1} \mapsto a_0.$$

Dynamical space picture. After conjugacy, $f_{a,v}(az)/a$, we have:

$$a_j = \begin{cases}
 a + o(a) & \text{or} \\
 -2a + o(a).
\end{cases}$$

Bonifant and Milnor:

Do the leading terms of $a_j - a$, for $j = 1, \ldots, p - 1$ determine U uniquely?
There exists $\mu \geq 1$ and a local coordinate ζ for \mathcal{U} near ∞ such that

$$a = \frac{1}{\zeta^\mu}.$$
Leading monomials

There exists $\mu \geq 1$ and a local coordinate ζ for U near ∞ such that

$$a = \frac{1}{\zeta^\mu}.$$

Then,

$$\frac{a_j - a}{a} = \text{holomorphic}(\zeta) = \sum_{k \geq k_0} c_k \zeta^k = \sum_{k \geq k_0} c_k \left(\frac{1}{a}\right)^{k/\mu}.$$
There exists $\mu \geq 1$ and a local coordinate ζ for U near ∞ such that

$$a = \frac{1}{\zeta^\mu}.$$

Then,

$$\frac{a_j - a}{a} = \text{holomorphic}(\zeta) = \sum_{k \geq k_0} c_k \zeta^k = \sum_{k \geq k_0} c_k \left(\frac{1}{a}\right)^{k/\mu}.$$

Leading monomial

$$m_j = c_{k_0} \left(\frac{1}{a}\right)^{k_0/\mu}.$$
Theorem. *The leading monomial vector*

\[\vec{m} = (m_1, \ldots, m_{p-1}, 0) \]

determines the escape region uniquely.
Theorem. The leading monomial vector

\[\vec{m} = (m_1, \ldots, m_{p-1}, 0) \]

determines the escape region uniquely.

Corollary. (Bonifant, -, Milnor) Assume that the leading monomial vector of \(\mathcal{U} \) is

\[(c_1 a^{-k_1/\mu}, \ldots, c_{p-1} a^{-k_{p-1}/\mu}). \]

Then, for all \(j \),

\[a_j \in \mathbb{Q}(c_1, \ldots, c_{p-1})(a^{-1/\mu}). \]
Equations

For an escape region \mathcal{U},

$$v = a_1 = (+a \text{ or } -2a) + a \cdot \sum_{k \geq k_0} c_k \left(\frac{1}{a}\right)^{k/\mu}$$

is a solution of

$$f^p_{a,v}(+a) = +a \quad (*)$$

in some extension of $\mathbb{Q}((1/a))$.
Put t instead of $1/a$ to get $\mathbb{Q}((t))$ and study solutions of (*) in the algebraic closure of $\mathbb{Q}((t))$:

$$\mathbb{Q}^a \ll t \gg = \bigcup \mathbb{Q}^a((t^{1/m})).$$
Put t instead of $1/a$ to get $\mathbb{Q}((t))$ and study solutions of (*) in the algebraic closure of $\mathbb{Q}((t))$:

$$\mathbb{Q}^a \ll t \gg = \cup \mathbb{Q}^a((t^{1/m})).$$

$\mathbb{Q}^a \ll t \gg$ is endowed with

$$|z = \sum_{k \geq k_0} c_k t^{k/m}| = e^{-\text{ord}_0(z)} = e^{-k_0/m}.$$
Field

Put t instead of $1/a$ to get $\mathbb{Q}((t))$ and study solutions of (*) in the algebraic closure of $\mathbb{Q}((t))$:

$$\mathbb{Q}^a \ll t \gg = \cup \mathbb{Q}^a((t^{1/m})).$$

$\mathbb{Q}^a \ll t \gg$ is endowed with

$$|z| = \sum_{k \geq k_0} c_k t^{k/m} = e^{-\text{ord}_0(z)} = e^{-k_0/m}.$$

Complete it to get \mathbb{L}.
Non-Archimedean problem

For \(\nu \in \mathbb{L} \), consider

\[
\psi_\nu(z) = t^{-2}(z - 1)(z + 2) + \nu \in \mathbb{L}[z].
\]
Non-Archimedean problem

For $\nu \in \mathbb{L}$, consider

$$\psi_\nu(z) = t^{-2}(z - 1)(z + 2) + \nu \in \mathbb{L}[z].$$

ν is periodic parameter if $\omega^+ = +1$ is periodic under ψ_ν.
Non-Archimedean problem

For $\nu \in \mathbb{L}$, consider

$$\psi_\nu(z) = t^{-2}(z - 1)(z + 2) + \nu \in \mathbb{L}[z].$$

ν is periodic parameter if $\omega^+ = +1$ is periodic under ψ_ν.

In this case:

$$\omega^+ = +1 \Longleftrightarrow \omega_1^+ = \nu \Longleftrightarrow \cdots \Longleftrightarrow \omega_{p-1}^+ \Longleftrightarrow \omega^+. $$
Non-Archimedean problem

For $\nu \in \mathbb{L}$, consider

$$\psi_\nu(z) = t^{-2}(z - 1)(z + 2) + \nu \in \mathbb{L}[z].$$

ν is periodic parameter if $\omega^+ = +1$ is periodic under ψ_ν.

In this case:

$$\omega^+ = +1 \mapsto \omega_1^+ = \nu \mapsto \cdots \mapsto \omega_{p-1}^+ \mapsto \omega^+.$$

It follows,

$$\omega_j^+ = \begin{cases} +1 + c \cdot t^{k/m} + h.o.t. \\ -2 + d \cdot t^{\ell/n} + h.o.t. \end{cases}$$
Non-Archimedean problem

For \(\nu \in \mathbb{L} \), consider

\[
\psi_{\nu}(z) = t^{-2}(z - 1)(z + 2) + \nu \in \mathbb{L}[z].
\]

\(\nu \) is **periodic parameter** if \(\omega^+ = +1 \) is periodic under \(\psi_{\nu} \).

In this case:

\[
\omega^+ = +1 \mapsto \omega_1^+ = \nu \mapsto \cdots \mapsto \omega_{p-1}^+ \mapsto \omega^+.
\]

It follows,

\[
\omega_j^+ = \begin{cases}
+1 + c \cdot t^{k/m} + h.o.t. \\
-2 + d \cdot t^{\ell/n} + h.o.t.
\end{cases}
\]

The corresponding **leading monomial** are

\[
\mathbf{m}(\omega_j^+ - \omega^+) = \begin{cases}
c \cdot t^{k/m} \\
-3
\end{cases}
\]

respectively.
Theorem. The leading monomial vector

$$\vec{m} = (m_1, \ldots, m_{p-1}, 0)$$

determines the periodic parameter ν uniquely.
The filled Julia set of ψ_ν is

$$K(\psi_\nu) = \{z \in \mathbb{L} | \psi_\nu^n(z) \not\to \infty\}.$$
Dynamical Space

The filled Julia set of \(\psi_\nu \) is

\[
K(\psi_\nu) = \{ z \in \mathbb{L} | \psi_\nu^n(z) \not\to \infty \}.
\]

\(|\nu| \leq 1 \implies \psi_\nu^n(z) \to \infty \) when \(|z| > 1\).
Dynamical Space

The filled Julia set of ψ_ν is

$$K(\psi_\nu) = \{ z \in \mathbb{L} \mid \psi_\nu^n(z) \not\to \infty \}.$$

$|\nu| \leq 1 \implies \psi_\nu^n(z) \to \infty$ when $|z| > 1$.

Level 0 dynamical ball $D_0 = \{|z| \leq 1\}$.
The filled Julia set of ψ_ν is

$$K(\psi_\nu) = \{ z \in \mathbb{L} | \psi_\nu^n(z) \not\to \infty \}.$$

$|\nu| \leq 1 \implies \psi_\nu^n(z) \to \infty$ when $|z| > 1$.

Level 0 dynamical ball $D_0 = \{|z| \leq 1\}$.

Level n set

$$\{\psi_\nu^n(z) \in D_0\}$$

is a disjoint union of finitely many dynamical balls of level n.

Dynamical Space

The filled Julia set of ψ_ν is

$$K(\psi_\nu) = \{z \in \mathbb{L} \mid \psi_\nu^n(z) \not\to \infty\}.$$

$|\nu| \leq 1 \implies \psi_\nu^n(z) \to \infty$ when $|z| > 1$.

Level 0 dynamical ball $D_0 = \{|z| \leq 1\}$.

Level n set

$$\{\psi_\nu^n(z) \in D_0\}$$

is a disjoint union of finitely many dynamical balls of level n.

Each level $n + 1$ ball is contained in, and maps onto, a level n ball.
Maximal open balls in a closed ball D are parametrized by \mathbb{Q}^a.

If ψ maps D onto D' by degree d, then it induces a polynomial map of degree d in \mathbb{Q}^a.
Computing $|\omega_j^+ - \omega^+|$.

Fact. If B is a maximal open ball of a dynamical ball D_ℓ of level ℓ, then B contains at most one dynamical ball of level $\ell + 1$.
Computing $|\omega_j^+ - \omega^+|$.

Fact. If B is a maximal open ball of a dynamical ball D_ℓ of level ℓ, then B contains at most one dynamical ball of level $\ell + 1$.

Consequence. If $D_\ell(\omega^+) = D_\ell(\omega_j^+)$ but $D_{\ell+1}(\omega^+) \neq D_{\ell+1}(\omega_j^+)$, then $|\omega_j^+ - \omega^+|$ is the diameter of $D_\ell(\omega^+) = D_\ell(\omega_j^+)$.
Parameter space

The level 0 parameter ball is

\[\mathcal{D}_0 = \{ |\psi_{\nu}(\omega^+) = \nu| \leq 1 \}. \]
Parameter space

The level 0 parameter ball is

\[\mathcal{D}_0 = \{ |\psi_v(\omega^+) = v| \leq 1 \} . \]

The parameters of level \(n \)

\[\{ |\psi_n^{-1}(\omega^+)| \leq 1 \} \]

are a disjoint union of closed balls \(\mathcal{D}_n \) called level \(n \) parameter balls.
Proposition. Assume D_ℓ is a level ℓ parameter ball. Then:

$$D_\ell = D_\ell(\nu) \text{ for all } \nu \in D_\ell.$$
Proposition. Assume \mathcal{D}_ℓ is a level ℓ parameter ball. Then:

$$\mathcal{D}_\ell = \mathcal{D}_\ell(\nu) \text{ for all } \nu \in \mathcal{D}_\ell.$$

The level $\ell + 1 - j$ dynamical ball $\psi^\nu_{\nu}(\mathcal{D}_\ell(\nu))$ is independent of $\nu \in \mathcal{D}_\ell$.
Proposition. Assume D_ℓ is a level ℓ parameter ball. Then:

$$D_\ell = D_\ell(\nu) \text{ for all } \nu \in D_\ell.$$

The level $\ell + 1 - j$ dynamical ball $\psi'(D_\ell(\nu))$ is independent of $\nu \in D_\ell$.

The ψ_ν action on maximal open balls is also independent of $\nu \in D_\ell$.
Proposition. Assume \mathcal{D}_ℓ is a level ℓ parameter ball. Then:

$$\mathcal{D}_\ell = \mathcal{D}_\ell(\nu) \text{ for all } \nu \in \mathcal{D}_\ell.$$

The level $\ell + 1 - j$ dynamical ball $\psi^j_\nu(\mathcal{D}_\ell(\nu))$ is independent of $\nu \in \mathcal{D}_\ell$.

The ψ_ν action on maximal open balls is also independent of $\nu \in \mathcal{D}_\ell$.

If p_ℓ is the smallest integer q such that

$$\omega^+ \in \psi^{q-1}_\nu(\mathcal{D}_\ell(\nu)),$$

then every periodic parameter in \mathcal{D}_ℓ has period at least p_ℓ.
Proposition. There exists a unique ν in D_ℓ which is periodic with period p_ℓ.

Proof. The map $T : D_\ell \to D_\ell$ defined by

$$T(\nu) = (\psi_{p_\ell} - 1 \nu|_{D_\ell(\nu)}) - 1(\omega + 1)$$

is a strict contraction. □

Such ν is called the center of D_ℓ.

Centers
Proposition. There exists a unique \(\nu \) in \(D_\ell \) which is periodic with period \(p_\ell \).

Proof. The map \(T : D_\ell \rightarrow D_\ell \) defined by

\[
T(\nu) = \left(\psi_\nu^{p_\ell-1} |_{D_\ell(\nu)} \right)^{-1}(\omega^+)
\]

is a strict contraction.

Such \(\nu \) is called the center of \(D_\ell \).
Level $\ell + 1$ correspondence

Proposition. Let B be a maximal open ball of a parameter ball D_ℓ and consider any $\nu \in D_\ell$.

- B contains a parameter ball of level $\ell + 1$ if and only if
- B contains a dynamical ball of level $\ell + 1$.

In this case, the level $\ell + 1$ balls are unique.
Leading monomials determine parameter balls

Assume ν, ν' have the same leading monomial vector.
Leading monomials determine parameter balls

Assume ν, ν' have the same leading monomial vector.
Let us prove by induction on ℓ.

$$\mathcal{D}_\ell(\nu) = \mathcal{D}_\ell(\nu')$$
Assume ν, ν' have the same leading monomial vector.

Let us prove by induction on ℓ.

$$D_\ell(\nu) = D_\ell(\nu')$$

Take ν_ℓ the center of level ℓ.
Assume ν, ν' have the same leading monomial vector.

Let us prove by induction on ℓ.

$$D_\ell(\nu) = D_\ell(\nu')$$

Take ν_ℓ the center of level ℓ.

There is a unique maximal open ball B in $D_\ell(\nu_\ell)$ whose orbit is compatible with the leading monomial vector.
Assume ν, ν' have the same leading monomial vector.

Let us prove by induction on ℓ.

$$D_\ell(\nu) = D_\ell(\nu')$$

Take ν_ℓ the center of level ℓ.

There is a unique maximal open ball B in $D_\ell(\nu_\ell)$ whose orbit is compatible with the leading monomial vector.

That is, ν, ν' belong to B

Thus ν, ν' belong to the unique level $\ell + 1$ parameter ball contained in B.

Hence, $D_{\ell+1}(\nu) = D_{\ell+1}(\nu')$.
Given a sequence
\[\mathcal{D}_0 \supset \mathcal{D}_1 \supset \cdots . \]
With centers
\[\nu_0, \nu_1, \cdots . \]
Which lie in
\[L_0((t^{1/m_0})) \subset L_1((t^{1/m_1})) \subset \cdots \]
Branner and Hubbard tell us how to compute \(m_k \).
Given a sequence

$$D_0 \supset D_1 \supset \cdots$$

With centers

$$\nu_0, \nu_1, \cdots$$

Which lie in

$$L_0((t^{1/m_0})) \subset L_1((t^{1/m_1})) \subset \cdots$$

Branner and Hubbard tell us how to compute m_k.

Compute L_k.

Homework