Minors & Algorithms

Erik Demaine
M.I.T.
Minors

- H is a **minor** of G if G can reach H via
 - edge deletions
 - edge contractions

$K_{3,3}$ is a minor of
Graph Minors. I. Excluding a Forest

Neil Robertson and P. D. Seymour

Department of Mathematics, Ohio State University, 231 W. 18th Ave., Columbus, Ohio

Communicated by the Editor

Received May 3, 1982

The path-width of a graph is the minimum value of \(\lambda\) obtained from a sequence of graphs \(G_1, \ldots, G_s\) each containing \(n\) vertices, by identifying some vertices of \(G_i\) pairwise with \(G_{i+1}\). For every forest \(H\) it is proved that there is a number \(k\) such that no minor isomorphic to \(H\) has path-width \(\leq k\). This, together with the papers, yields a “good” algorithm to test for the presence of every minor, and implies that if \(P\) is any property of graphs that does not have property \(P\), then the set of minor-minimal graphs not having \(P\) is finite.

Graph Minors. XX. Wagner’s conjecture

Neil Robertson\(^a,1\), P.D. Seymour\(^b,2\)

\(^a\)Department of Mathematics, Ohio State University, 231 West 18th Ave., Columbus, OH 43210, USA

\(^b\)Telcordia Technologies, 445 South St., Morristown, NJ 07960, USA

Received 13 February 2001

Abstract

We prove Wagner’s conjecture, that for every infinite set of finite graphs, one of its members is isomorphic to a minor of another.

\(©\) 2004 Elsevier Inc. All rights reserved.

Keywords: Graph, Minor, Surface embedding, Well-quasi-ordering
Wagner’s Conjecture
[Robertson & Seymour 2004]

- Minor relation is a **well-quasi-ordering**: Every *infinite* graph sequence G_1, G_2, G_3, \ldots has some G_i a minor of G_j (with $i < j$)

...or equivalently...

- Every **minor-closed** graph family is characterized by a **finite** set of excluded minors
 - **Proof by contradiction**: Infinite excluded minors would have a minor relation among them
 - In some sense necessarily **nonconstructive** [Friedman, Robertson, Seymour 1987]
Wagner’s Conjecture
[Robertson & Seymour 2004]

- Every **minor-closed** graph family is characterized by a **finite** set of excluded minors

- **Examples:**
 - Forests: K_3
 - Outerplanar: $K_4 \& K_{2,3}$
 - Series-parallel: K_4
 - Planar: $K_5 \& K_{3,3}$
 - Linklessly embeddable: Petersen family [Robertson & Seymour 1995]
Algorithms via Minors

• Theorem: Polynomial test for a fixed minor \(H \)
 - \(f(H) n^3 \) [GM XII, 1995]
 - \(f(H) n^2 \) [Kawarabayashi, Kobayashi, Reed 2012]

• Corollary: Any minor-closed graph property has a polynomial-time decision algorithm
 - But algorithm is existential: in general, don’t know which excluded minors to test for
Warning:
Graph Minor Constants

• **Example**: Planar minor testing [GM5 1986], analyzed by David Johnson [1987]
 - Running time $= O(n^3)$
 - Lead constant $= 2^{2^{2^x}}$, $x = 2^{2^{2^{\cdots}}} 2^{2^{\cdots}} \frac{1}{2} |V(H)|$

“1. The Case of the Hidden Constants

… Unfortunately, for any instance $G = (V,E)$ that one could fit into the known universe, one would easily prefer $|V|^{70}$ to even constant time, if that constant had to be one of Robertson and Seymour’s.”

The NP-Completeness Column: An Ongoing Guide

DAVID S. JOHNSON

AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Fixed-Parameter Algorithms via Minors

• Graph parameter is **minor-closed** if it only decreases when deleting or contracting
 ▪ **Examples**: vertex cover, feedback vertex set

• **Corollary**: Any minor-closed graph parameter has an \(f(k) n^2 \) algorithm for deciding \(\leq k \)
 ▪ “Fixed-parameter tractable”
 ▪ But a **different**, unknown algorithm for each \(k \)
 ▪ Not really a (uniform) fixed-parameter algorithm

[Fellows & Langston 1988]
Fixed-Parameter Algorithms via Minors

• **Theorem:** Any minor-closed graph parameter
 - nonzero on some planar graph,
 - at least the sum over connected components in a disconnected graph, and
 - fixed-parameter tractable with respect to treewidth

 can be solved in $f(k) n$ by a known algorithm

[Demaine & Hajiaghayi 2007]
What Are H-minor-free Graphs Like?

- Bounded average degree (& degeneracy): $O \left(|V(H)| \sqrt{\log |V(H)|} \right)$
 [Kostochka 1982; Thomason 1984]

- $O(\sqrt{n})$ treewidth [Grohe 2003]

- $\Rightarrow O(\sqrt{n})$ balanced separators
 (like Lipton-Tarjan planar separator theorem)
 [Alon, Seymour, Thomas 1990]

- Kinda like planar graphs?
Structure Theorem:

- H-minor-free graph looks like a tree of "almost embeddable" graphs:
 - Base graph drawn on surface of genus $f(H)$
 - $f(H)$ vortex faces filled with graphs of pathwidth $f(H)$
 - $f(H)$ apex vertices connected to anything
H-Minor-Free Graphs
[Robertson & Seymour 2003]

Structure Theorem:
• H-minor-free graph looks like a tree of “almost embeddable” graphs

Structure Algorithms:
• $n^f(H)$ [Demaine, Hajiaghayi, Kawarabayashi — FOCS 2005]
• $O(n^3)$ [Kawarabayashi & Wollan — STOC 2011]
• $O(n^2)$ [Grohe, Kawarabayashi, Reed — SODA 2013]
Grid Minors vs. Treewidth

- Every H-minor-free graph of treewidth $\geq f(H) \cdot r$ has an $r \times r$ grid minor [Demaine & Hajiaghayi 2005]
 - Previous bounds exponential in r (and H) [GM5, ...]
 - $f(H) = |V(H)|^{O(|E(H)|)}$ [Kawarabayashi & Kobayashi 2012]

- Every graph of treewidth $\geq c_1 \cdot r^{c_2}$ has an $r \times r$ grid minor [Chekuri & Chuzhoy 2013]
 - $c_2 > 2$ necessary [Robertson, Seymour, Thomas 1994]
 - Previous bounds exponential in r [RST94]
Almost-embeddable graphs:
- Remove apices by deletion
- Contract each vortex to a vertex
- Pull apart each handle
 [Demaine, Fomin, Hajiaghayi, Thilikos 2004]
- Planar graph has large grid minor [RST94]

Tree takes max of treewidths, so one almost-embeddable graph has full treewidth
- But may not be H-minor-free from tree joins
- “Approximate” graph to make minor of original graph $\Rightarrow H$-minor-free [Demaine & Hajiaghayi 2005]
Graph Minor Hierarchy

- planar
- bounded genus
 - apex-minor-free
 - H-minor-free
Apex-Minor-Free Graphs

- Bounded local treewidth = radius-r neighborhood around every vertex v has treewidth $\leq f(r)$
 - **Examples:** planar and bounded-genus graphs
- Minor-closed graph family has bounded local treewidth \iff excludes an apex graph = minor of planar graph + one vertex
 - [Eppstein 2000]
 - Call such graphs apex-minor-free
Apex-Minor-Free Graphs

- **Structure Theorem:** Apices attach only to vortices, allowing bounded-treewidth vortices
 - Additive +2 approximation for chromatic number (extending from bounded genus [Thomassen 1997])

- **Bounded local treewidth**
 - \(f(r) = 2^{2^O(r)} \) [Eppstein 2000]
 - \(f(r) = 2^O(r) \) [Demaine & Hajiaghayi 2004a]
 - \(f(r) = O(r) \) [Demaine & Hajiaghayi 2004b]
 - [EPTASs: \(2^{2^{O(1/\varepsilon)}} n^{O(1)} \rightarrow 2^{O(1/\varepsilon)} n^{O(1)} \)]
• Equivalently, H is a **minor** of G if

 - Every vertex v in H has a corres. tree T_v in G
 - Any edge (v, w) in H has a corresponding edge connecting T_v to T_w in G

$K_{3,3}$ is a minor of

delete contract

“model”
Odd Minors

• \(H \) is an **odd minor** of \(G \) if we can also **2-color** the vertices in \(G \) so that
 - Tree edges are **bichromatic**
 - \(T_v \)-to-\(T_w \) edges are **monochromatic**

\[K_{3,3} \] is an odd minor of
Odd Minors

- H is an **odd minor** of G if we can also **2-color** the vertices in G so that
 - Tree edges are **bichromatic**
 - T_v-to-T_w edges are **monochromatic**

is an odd minor of $K_{3,3}$
Odd Minors

- H is an **odd minor** of G if we can also **2-color** the vertices in G so that
 - Tree edges are **bichromatic**
 - T_v-to-T_w edges are **monochromatic**

$K_{3,3}$ is an odd minor of

is an odd minor of

delete

contract
Odd-Minor-Free Graphs
[Demaine, Hajiaghayi, Kawarabayashi 2010]

- **Structure Theorem:** Every odd-H-minor-free graph can be written as a tree of graphs joined along $f(H)$-size cliques, where each term is
 - Bounded-genus graph
 + $f(H)$ vortices
 + $f(H)$ apices
 (joined at only 3 surface vertices)
 - Bipartite graph
 + $f(H)$ apices
 (joined at only 1 bipartite vertex)
- $n^{f(H)}$ algorithm
 - $f(H) n^{O(1)}$ simpler decomp. [Tazari 2012]
any problem satisfying:
- closed under contraction [& deletion]
- \(\text{OPT} \) costly on \(r \times r \) grid

Bidimensionality Overview

- subexponential fixed-parameter algorithm: \(2^{O(\sqrt{\text{OPT}})} n^{O(1)} \)
- efficient PTAS: \(f(\varepsilon) n^{O(1)} \) time
- linear kernelization: \(n \to O(\text{OPT}) \)

... on \(H \)-minor-free graphs
History of Subexponential FPT

- In the early days, most fixed-parameter algorithms ran in $2^{O(k^c)} \cdot n^{O(1)}$ time, for $c \geq 1$

- **Natural question**: Is $2^{o(k)} \cdot n^{O(1)}$ possible?
History of Subexponential FPT

- **Vertex Cover**: choose smallest set of vertices to cover every edge (on either endpoint)

- Vertex Cover can be kernelized to \(\leq 2k \) vertices

- Lipton & Tarjan’s separator approach [1980] solves Planar Independent Set in \(2^{O(\sqrt{n})} \) time
 - Min. Vertex Cover + Max. Independent Set = \(|V| \)
 - \(\Rightarrow n^{O(1)} + 2^{O(\sqrt{k})} \) time
History of Subexponential FPT

- What about problems like these?
 - **Dominating Set**: Cover all vertices with k vertex neighborhoods
 - **Feedback Vertex Set**: Cover cycles with k vertices
 - **Long Path**: Is there a simple path of length $\geq k$?

- No linear (or even polynomial) kernel was known for these problems then

- We now know that some, e.g. Long Path, have no polynomial kernel (unless \(\text{NP} \subseteq \text{coNP/poly} \)), even for planar graphs

 [Bodlaender, Downey, Fellows, Hermelin 2009]
History of Subexponential FPT

- $2^{O(\sqrt{k})}n^{O(1)}$ for planar Dominating Set
 [Alber, Bodlaender, Fernau, Kloks, Niedermeier 2000]

- Same approach extended to Dominating Set variations, Feedback Vertex Set, etc.
Bidimensionality Overview

- Any problem satisfying:
 - Closed under contraction [\& deletion]
 - OPT costly on $r \times r$ grid
- Minor H
- Parameter-treewidth bound
- Subexponential fixed-parameter algorithm
- Efficient PTAS
- Linear kernel
- ... on H-minor-free graphs
Bidimensionality (version 1)

[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

- Parameter $k = k(G)$ is **bidimensional** if
 - **Closed under minors:**
 k only decreases when deleting or contracting edges
 - **Large on grids:**
 For the $r \times r$ grid, $k = \Omega(r^2)$
Example 1: Vertex Cover

- $k =$ minimum number of vertices required to cover every edge (on either endpoint)

- Closed under minors:

 ⇒ still a cover (only fewer edges)

 ⇒ still a cover, possibly 1 smaller
Example 1: Vertex Cover

- $k =$ minimum number of vertices required to cover every edge (on either endpoint)

- Large on grids:
 - Matching of size $\Omega(r^2)$
 - Every edge must be covered by a different vertex
Example 2: Feedback Vertex Set

- $k =$ minimum number of vertices required to cover every cycle (on some vertex)

- Closed under minors:
 - \Rightarrow still a cover (only break cycles)
 - \Rightarrow still a cover, possibly 1 smaller
Example 2: Feedback Vertex Set

- $k =$ minimum number of vertices required to cover every cycle (on some vertex)

- **Large on grids:**
 - $\Omega(r^2)$ vertex-disjoint cycles
 - Every cycle must be covered by a different vertex
Bidimensional ⇒ Relate Parameter & Treewidth

- **Theorem 1**: If a parameter k is bidimensional, then it satisfies parameter-treewidth bound
 \[\text{treewidth} = O(\sqrt{k}) \]
 in H-minor-free graphs
 [Demaine, Fomin, Hajiaghayi, Thilikos 2004; Demaine & Hajiaghayi 2005]

- **Proof sketch**:
 Treewidth $w \Rightarrow \Omega(w) \times \Omega(w)$ grid minor
 \[\Rightarrow k = \Omega(w^2) \]
 [bidimensional]
Theorem 2: If a parameter k is
- bidimensional, and
- fixed-parameter tractable on graphs of bounded treewidth: $h(\text{treewidth}) n^{O(1)}$ time
then it has a subexponential fixed-parameter algorithm, running in $h(\sqrt{k}) n^{O(1)}$ time, in H-minor-free graphs

Proof sketch:
- If (approx.) treewidth $= \omega(\sqrt{k})$, answer NO
- Else run bounded-treewidth algorithm
any problem satisfying:
- closed under contraction [\& deletion]
- \(\text{OPT costly on } r \times r \text{ grid} \)

minor \(H \)

\begin{itemize}
\item parameter-treewidth bound
\item subexponential fixed-parameter algorithm
\item efficient PTAS
\item linear kernel
\end{itemize}

\(\ldots \text{ on } H\text{-minor-free graphs} \)
any problem satisfying:

closed under contraction [& deletion]

OPT costly on $r \times r$ grid

minor H

parameter-treewidth bound

subexponential fixed-parameter algorithm

efficient PTAS

linear kernel

... on H-minor-free graphs
Theorem 4: If a parameter is
- bidimensional,
- satisfies the “separation property”, and
- has “finite integer index”,
then it has a linear kernel in H-minor-free graphs

[Fomin, Lokshtanov, Saurabh, Thilikos 2009]
Bidimensional \Rightarrow Linear Kernel

- **Protrusion:**
 - Idea: Kernelize protrusions

- **Idea:** Kernelize protrusions
Bidimensionality (version 2)
[Demaine, Fomin, Hajiaghayi, Thilikos 2004]

- Parameter k is contraction-bidimensional if
 - Closed under contractions: k only decreases when contracting edges
 - Large on gridoids:
 - For $r \times r$ “grid-like graphs”, $k = \Omega(r^2)$
 - Triangulated + few extra edges
Bidimensionality (version 3)
[Fomin, Golovach, Thilikos 2009]

- Parameter k is contraction-bidimensional if
 - Closed under contractions: k only decreases when contracting edges
 - Large on Γ graphs:
 For naturally triangulated
 $r \times r$ grid graphs, $k = \Omega(r^2)$
Contraction-Bidimensional Problems

- Minimum maximal matching
- Face cover (planar graphs)
- Dominating set
- Edge dominating set
- r-dominating set
- Connected ... dominating set
- Unweighted TSP tour
- Chordal completion (fill-in)
Theorem 6: As before, obtain
- parameter-treewidth bound
- subexponential FPT
- efficient PTASs
- linear kernel

for contraction-bidimensional parameters in any graph family excluding an apex minor

Separators via Bidimensionality

- **Number of vertices** is minor-bidimensional
- Parameter-treewidth bound
 \[\Rightarrow \text{treewidth} = O(\sqrt{k}) = O(\sqrt{n}) \]
- **Corollary:** For any fixed graph \(H \), every \(H \)-minor-free graph has treewidth \(O(\sqrt{n}) \) and hence separator of size \(O(\sqrt{n}) \)

[Alon, Seymour, Thomas 1990; Grohe 2003]
Local Treewidth via Bidimensionality

- **Diameter** is a contraction-bidimensional parameter except $\Omega(r)$, not $\Omega(r^2)$, in $r \times r$ grid
- \Rightarrow Treewidth $= O(\text{diameter})$ in apex-minor-free graphs
- \Rightarrow Treewidth of radius-r neighborhood $= O(r)$

[Demaine & Hajiaghayi 2004]
General Graphs via Bidimensionality

- **Theorem**: Any minor-closed graph parameter
 - nonzero on some planar graph X,
 - at least the sum over connected components in a disconnected graph, and
 - fixed-parameter tractable with respect to treewidth can be solved in $f(k)n$ by a known algorithm [Demaine & Hajiaghayi 2007]

- **Proof sketch**:
 - Treewidth $> c_1(xk)^{c_2} \Rightarrow (xk) \times (xk)$ grid minor
 $\Rightarrow k^2$ of $x \times x$ grid minors, with X minor
 $\Rightarrow \text{OPT} \geq k^2 \Rightarrow \text{answer NO}$
• **Conjecture:** Algorithms for contraction-bidimensional problems generalize to H-minor-free graphs, even for a non-apex graph H
 - True for e.g. dominating set subexponential FPT (but parameter-treewidth bound *false*) [Demaine, Fomin, Hajiaghayi, Thilikos 2004]
 - Stronger form of contraction-bidimensionality works [Fomin, Golovach, Thilikos 2009]
Beyond H-Minor-Free Graphs

- **Conjecture**: Most of bidimensionality theory generalizes to fixed powers of H-minor-free graphs, e.g., map graphs
 - Treewidth $\Omega(r^7)$
 $\Rightarrow r \times r$ grid minor
 [Demaine, Hajiaghayi, Kawarabayashi 2009]
 - Subexponential FPT for dominating set in map graphs
 [Demaine, Fomin, Hajiaghayi, Thilikos 2003]
 - Subexponential FPT & EPTASs for map graphs by “cleaning” cliques [Fomin, Lokshtanov, 2012]
Beyond *H*-Minor-Free Graphs

- **Excluded topological minors**
 - Linear kernel for (connected) dominating set
 [Fomin, Lokshtanov, Saurabh, Thilikos 2013]
 - General framework for linear kernels
 [Langer, Reidl, Rossmanith, Sikdar 2012]

- **Directed graphs**
 - Subexponential fixed-parameter algorithms for e.g. Directed Hamiltonian Path via bidimensionality
 [Dorn, Fomin, Lokshtanov, Raman, Saurabh 2010]
 - PTASs?
Beyond: Subset Problems

- What if only some of the nodes are “critical”?
- Steiner tree, subset TSP, etc. have PTASs up to bounded-genus graphs
 [Borradaile, Mathieu, Klein 2007; Borradaile, Demaine, Tazari 2009]
- Steiner forest has PTAS in planar graphs
 [Bateni, Hajiaghayi, Marx 2010]
- **Wanted:** General framework
Contractions not Well-Quasi-Ordered
[Demaine, Hajiaghayi, Kawarabayashi 2009]

• No $K_{2,k}$ can be contracted into $K_{2,j}$

• Well-quasi-ordered for
 - triangulated planar graphs
 - 2-connected outerplanar graphs
 - trees

• Minor-closed \Rightarrow finite excluded contractions
Simplifying Graph Decomposition
[Demaine, Hajiaghayi, Kawarabayashi 2005; DeVos et al. 2004]

- H-minor-free graphs can have vertices or edges partitioned into k pieces such that deleting any one piece results in bounded treewidth
 - For PTAS, set $k \approx 1/\varepsilon$
 - $n^{f(H)}$ algorithm
 - $f(H)n^{O(1)}$ algorithm [Tazari 2012]

- Previously known for
 - planar graphs [Baker 1994]
 - apex-minor-free [Eppstein 2000]
Odd-H-minor-free graphs can have their vertices or edges partitioned into 2 pieces such that deleting any one piece results in bounded treewidth

- $n^{f(H)}$ algorithm
- $f(H) n^{O(1)}$ algorithm

[Tazari 2012]
Contraction Decomposition
[Demaine, Hajiaghayi, Kawarabayashi 2011]

- **Theorem**: H-minor-free graphs can have their edges partitioned into k pieces such that contracting any one piece results in bounded treewidth
 - Polynomial-time algorithm
 - Previously known for
 - planar [Klein 2005, 2006]
 - bounded-genus [Demaine, Hajiaghayi, Mohar 2007]
 - apex-minor-free [Demaine, Hajiaghayi, Kawarabayashi 2009]
Applications of Contraction Decomposition

- PTAS for Traveling Salesman Problem in weighted H-minor-free graphs
 - Decade-old problem by [Grohe]
- PTAS for minimum-size c-edge-connected submultigraph
- Fixed-parameter algorithm for k-cut & bisection

[Demaine, Hajiaghayi, Kawarabayashi 2011]
Fixed-Parameter Algorithms via Contraction Decomposition

- **Bisection**: Cut graph into equal halves with $\leq k$ edges between them
- FPT in H-minor-free graphs:
 - Closed under contraction (but not minors)
 - Contraction decomposition with $k + 1$ layers avoids OPT in some contraction
 - Vertices become weighted
 - Can still solve weighted bounded-treewidth
 - \Rightarrow Solve in $2^{\tilde{O}(k)} n + n^{O(1)}$ time
Fixed-Parameter Algorithms via Contraction Decomposition

- **k-cut**: Remove fewest edges to make at least k connected components
- FPT in H-minor-free graphs:
 - Average degree $c_H = O(H \sqrt{\lg H})$
 - \Rightarrow OPT $\leq c_H \cdot k$
 - \Rightarrow Contraction decomposition with $c_H \cdot k + 1$ layers avoids OPT in some contraction
 - \Rightarrow Solve in $2^{\tilde{O}(k)} \cdot n + n^{O(1)}$ time
- Generalization to arbitrary graphs
 [Kawarabayashi & Thorup 2011]
Start with **tight** precolored edges:

- Treewidth of radius-\(r \) neighborhood is \(f(r) \)
- \(c = O(1) \) induced connected components

Color edges at radial distance \(r \) with color \(r \mod k \)
Radial Coloring for Bounded Genus

[Demaine, Hajiaghayi, Kawarabayashi 2011]

• Contract color \(i \)
 ▪ Each connected component → articulation point
 ▪ Split these apart → **blobs**, connected in DAG

• Outdegree > 1 \(\Rightarrow \text{split} \)

• Indegree > 1 \(\Rightarrow \text{rejoin} \)
 ▪ \(\Rightarrow \) Indegree \(\leq c + g \)
 (initial component or handle)
Radial Coloring for Bounded Genus

[Demaine, Hajiaghayi, Kawarabayashi 2011]

- Split nonroot blob into \(\leq c + g \) chunks by closest BFS seed
- Each chunk has radial diameter \(O(k) \)
- Nonroot blob has radial diameter, so treewidth \(O(k (c + g)) \)
 [Eppstein 2000]
- Blob DAG = tree + \(\leq g \) extra edges
 - Tree of 1-sums doesn’t affect treewidth
 - Add extra edges to all bags \(\Rightarrow +O(g) \)
Contraction Decomp. for H-Minor-Free

- H-minor-free graph = “tree” of “almost-embeddable graphs” [GM16]

- Each almost-embeddable graph has contraction decomposition:
 - Bounded genus done
 - Apices easy: increase treewidth of anything by $O(1)$
 - Vortices similar

[Demaine, Hajiaghayi, Mohar 2007]
Tree “joins” between two graphs are clique sums:

- Attach at clique of same size
- Delete any desired edges

\[G = G_1 \oplus G_2 \]
Clique sums either:

- Vortices \leftrightarrow apices
 \Rightarrow no contraction necessary
- K_3 in bounded-genus part
 (hard part)

$G = G_1 \oplus G_2$
Solution Idea
[Demaine, Hajiaghayi, Kawarabayashi 2011]

- Find a path in child G_2 to simulate the effect of each deleted edge in K_3
 - Can make pieces G_i 3-edge-connected
- Need these paths to all contract together, by putting them all in piece 1
Solution Idea

[Demaine, Hajiaghayi, Kawarabayashi 2011]

• **Claim:** Precoloring $O(1)$ **shortest paths** doesn’t hurt contraction decomposition

• Shortcut paths to shortest paths (in radial graph \approx primal + dual)
 - Two paths $a \rightarrow b$; one path $c \rightarrow a-b$ path
Theorem: Treewidth of radius-\(r\) neighborhood of \(O(1)\) shortest paths is \(f(r)\)

- If not, large grid within the neighborhood
- **Intuition:** Then there should be a shortcut: \(2r \ll f(r)\)
Theorem: Treewidth of radius-r neighborhood of $O(1)$ shortest paths is $f(r)$

- Path is r-dive into $\Theta(r) \times \Theta(r)$ wall
- $\Rightarrow r$-rainbow
- By Menger’s Theorem, get $\Theta(r)$ “cross paths”
- Build $\Omega(r) \times \Omega(r)$ wall $\geq 2r$ away from shortest path
- Repeat for each path
Minors & Algorithms

Erik Demaine
M.I.T.