Impromptu Updating of MST and ST in a Distributed Dynamic Graph

Valerie King, University of Victoria
Joint work with Ben Mountjoy, Mikkel Thorup and Shay Kutten
Network with \(n \) nodes, \(m \) edges. Each node has list of incident edges and edge weights. Nodes have distinct IDs.
A network maintains a subgraph if its edges are marked by their endpoints.
Communication: Each node may send messages of size $O(\log n)$ to all its neighbors in a single step.

Synchronous vs. Asynchronous
UPDATES:
Insert (\{A,D\}, edge_weight)
Delete edge \{E,F\}
MST (resp. ST) Problem: Maintain a minimum spanning forest (resp., spanning forest) in a dynamic network
Main difficulty:
How to find a replacement edge when a tree edge is deleted
Our contribution:

A New Tool
for finding, impromptu, a replacement edge w.h.p.

for MST: an edge of min cost leaving a tree in a graph

for ST: any edge leaving a tree in a graph
Costs: MST / ST

Message complexity: $O(n \log n), O(n)$ (expected)

Preprocessing Time: NONE

Update Time: $O(\text{diam}(\text{tree}) \times \log n), O(\text{diam}(\text{tree}))$ expected.

Local memory needed between updates: NONE
previous distributed dynamic MST:

$O(n)$ messages--First dynamic updating
in $o(m)$ messages per update.

But local memory=
$O(n \times \text{degree of node} \times \log n)$
Stores the forest in each node;
Static MST/ST thought to require m messages!

Gallagher, Humblet and Spira (1983)
$O(m + n \log n)$ messages for building one from scratch (asynchronously)

Our method yields $O(n \log^2 n)$ messages for constructing an MST in the synchronous model.

NOT KNOWN if m can be avoided for the asynchronous model.
Talk outline:

1. KEY IDEA
2. The Odd hash function
3. Updating MST
4. Static MST
5. Updating ST
6. OPEN problems for distributed and sequential dynamic graphs.
KEY IDEA:

- C a maximally connected component of a graph.
 → the sum of the degrees of the nodes in C is \textbf{even}, since every edge incident to a node in C contributes 2.

- If C is not maximally connected,
 → the sum of degrees of the nodes in C of a random subset of edges is \underline{odd} with prob 1/2.
basic communication step: broadcast and return
How do we randomly sample and report results efficiently?
Odd hash function F

For any set S, we design hash

$$F: \{\text{weights}\} \rightarrow \{0, 1\}$$

s.t. there is a constant probability $(1/36)$ that an ODD number of its elements hash to 1, iff S is non empty. Else it is 0.
Applying the Odd hash function F

Let $E'=$\{edges incident to nodes in tree T_x\}

$\text{XOR } F(e)$ (over all e is incident to a node in T_x)

$= \text{XOR } F(e)$ (over all e with one endpoint in T_x)

$= 1$ with prob. $1/36$ unless the cut is empty.
Using the ODD Hash function:
TEST if there is a Replacement edge

- When a tree edge \(\{X,Y\} \) is deleted, if \(X < Y \)
- \(X \) becomes leader, broadcasts Odd hash \(F \) to other nodes in tree \(T_x \).
- Each node applies \(F \) to their set of incident edges and computes the XOR;
- XOR is taken over all nodes in \(T_x \).
- Repeat in parallel \(O(\log n) \) times to get prob error \(1/n^c \)
- Output 1 iff any one XOR =1
Find min wt replacement edge
(assuming distinct wts)

- Use binary search over the range of possible weights, testing w.h.p each time if there is a replacement edge in that wt range and narrowing the range.
- Return weight when only one is left.
Analysis

- $\lg (\text{Weight range})$ tests* cost of test

- \textbf{Cost of test} = initial cost of sending \log n hash functions, +
 + 1 broadcast and return for each phase of the binary search

- \textbf{Total} = $O(n \log^2 n)$ messages
Constructing the Odd hash function

- Let U be the universe of elements.
- S a subset of U.
- $F(x) \rightarrow \{0,1\}$
- We want:

$$\text{XOR}_{\{y \in S\}} F(y) = 1$$

iff S is non empty
Odd hash function F

Obvious approach takes $O(\log n)$ hashes

F has two parts,
- a 2-wise independent hash function $h: U \rightarrow U$
- t, a random element of U

DEF: $F(s)=1$ iff $h(s) < t$

Note: F can be described in $O(\log n)$ bits.
Why F is an Odd hash function

- h hashes U → U
- Imagine 2|S| equal sized intervals.

T lands in some I, in top third or bottom third

Exactly one x in I, in middle third
CASE: F works if

Parity of elements hashed to intervals left of I is
- Odd and t is in bottom third or
- Even and t is in top third

T lands in some I, and either top third or bottom third of I

Exactly one x in I, x is in middle third
Static synchronous MST alg

While $I < \log n$

Repeat:

Each component finds min wt edge incident to it, sends message to other endpoint, and waits n time steps. Then the found edges are inserted to form larger components.

Log n phases, each takes $\log n$ broadcasts and returns, for a total of $O(n \log^2 n)$ expected message communication.
Find any edge in expected $O(1)$ broadcasts and returns

STEP 1: (IF step) Determine if there is a replacement edge w.h.p.
- Use deterministic amplification to send out $O(\log n)$ bits which can be used by individual nodes to deterministically generate $\log n$ Odd Hash functions s.t one is good w.h.p.
- Return $\log n$ outputs using ONE return
STEP 2: (find) If there is a replacement edge, find it

- Broadcast a single 2-wise independent hash function h
- For $i=0,\ldots, 2\lg n$, every node x computes one word whose i^{th} bit =
 \[
 \text{XOR}_{y \text{ incident to } x} h(y) \leq 2^i
 \]
- If XOR over tree $\neq 0$, $\min \leftarrow \text{first } i \neq 0$
- Test if there is exactly one edge with $h(y) \leq 2^\min$. If so, return it.
- Else Repeat find.
Open problem and discussion

- Can we avoid the $O(m)$ communication costs of Gallagher for the asynchronous static model?
- Why this method is more complicated for sequential dynamic graph problem
- How the sequential dynamic graph method is not fully understood
Open problems for Sequential dynamic ST

- How to apply it to MST
- How to bring it down to $O(\log^3 n)$?
- Can we remove the tiers?