Epidemics on random graphs with a given degree sequence

Malwina Luczak1 2

School of Mathematical Sciences
Queen Mary, University of London
e-mail: m.luczak@qmul.ac.uk

14 April 2015
Workshop on Limit Shapes
ICERM

1Joint work with Svante Janson and Peter Windridge
2The work of Luczak and Windridge was supported by EPSRC Leadership Fellowship, grant reference EP/J004022/2.
The SIR process is a simple Markovian model for a disease spreading around a finite population.

Each individual is either susceptible, infective or recovered.

Individuals are represented by vertices in a graph G; edges correspond to potentially infectious contacts.

Susceptible vertices become infective at rate β times the number of infective neighbours in G.

Infective vertices become recovered at rate ρ.
Random graphs with a given degree sequence

Take a given degree sequence \((d_i)_{i=1}^n = (d_i^{(n)})_{i=1}^n\), and let \(G_n\) be uniform over all graphs with this degree sequence. (We assume \(\sum_{i=1}^n d_i\) is even.)

In fact, we prove our results by first studying a suitable random multigraph \(G_n^*\) (allowing multiple edges and loops) with the given degree sequence.

\(G_n^*\) is constructed by the configuration model: we equip each vertex \(i\) with \(d_i\) half-edges, and then take a uniform random matching of all half-edges into edges.
If we assume that degree sequences satisfy $\sum_{i=1}^{n} d_i^2 = O(n)$ (i.e. the second moment of the degree of a random vertex is bounded), then

$$\liminf_{n \to \infty} \mathbb{P}(G_n^* \text{ is simple}) > 0.$$

Any result for the random multigraph that concerns convergence in probability will also hold for the random simple graph, by conditioning on the event that G_n^* is simple.
Initial conditions

- At time 0 there are \(n_S = n_S^{(n)} \) susceptible, \(n_I = n_I^{(n)} \) infective, and \(n_R = n_R^{(n)} \) recovered vertices (individuals), with \(n_S + n_I + n_R = n \).

- Of these, \(n_{S,k} = n_{S,k}^{(n)} \), \(n_{I,k} = n_{I,k}^{(n)} \) and \(n_{R,k} = n_{R,k}^{(n)} \), respectively, have degree \(k \) (\(k = 0, 1, \ldots \)).

- Thus \(n_S = \sum_{k=0}^{\infty} n_{S,k} \), \(n_I = \sum_{k=0}^{\infty} n_{I,k} \), \(n_R = \sum_{k=0}^{\infty} n_{R,k} \).

- Also \(n_{S,k} + n_{I,k} + n_{R,k} = n_k \), the total number of vertices of degree \(k \).
As $n \to \infty$, the fractions of initially susceptible, infective and recovered individuals converge to constants α_S, α_I and α_R. That is

$$\frac{n_S}{n} = \frac{\sum_{k=0}^{\infty} n_{S,k}}{n} \to \alpha_S;$$

$$\frac{n_I}{n} = \frac{\sum_{k=0}^{\infty} n_{I,k}}{n} \to \alpha_I;$$

$$\frac{n_R}{n} = \frac{\sum_{k=0}^{\infty} n_{R,k}}{n} \to \alpha_R.$$

Thus $\alpha_S + \alpha_I + \alpha_R = 1$.

$\alpha_S > 0$.
The degree of a random initially susceptible individual has an asymptotic probability distribution \((p_k)_0^\infty\), i.e.,

\[
\lim_{n \to \infty} \frac{n_{S,k}}{n_S} = p_k, \quad k \geq 0.
\]

This distribution \((p_k)\) has finite mean \(\lambda\):

\[
\lambda = \sum_{k=0}^{\infty} kp_k < \infty.
\]

The average degree of the susceptible vertices converges to \(\lambda\):

\[
\frac{\sum_{k=0}^{\infty} kn_{S,k}}{n_S} \to \lambda.
\]
The average degree of all vertices converges to a constant μ, as $n \to \infty$:

$$\frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} \sum_{k=0}^{\infty} kn_k \to \mu.$$

For the infected and recovered vertices, we have

$$\frac{1}{n} \sum_{k=0}^{\infty} kn_{I,k} \to \mu_{I}; \quad \frac{1}{n} \sum_{k=0}^{\infty} kn_{R,k} \to \mu_{R};$$

for some constants μ_{I} and μ_{R}.

Thus $\mu = \alpha S \lambda + \mu_{I} + \mu_{R}$.

Also we assume that $\sum_{i} d_i^2 = O(n)$.

Malwina Luczak
Epidemics on random graphs with a given degree sequence
Let S_∞ be the number of infectives that ultimately escape infection.

Let ν_S be the scaled pgf of the asymptotic susceptible degree distribution:
$$\nu_S(x) = \alpha_S \sum_{k=0}^{\infty} p_k x^k.$$
Theorem

Suppose \(\mu_1 = 0 \), let \(Z = nS - S_{\infty} \), the number of susceptible vertices that ever get infected, and set

\[
R_0 = \left(\frac{\beta}{\rho + \beta} \right) \left(\frac{\alpha S}{\mu} \right) \sum_k k(k - 1)p_k.
\]

(i) If \(R_0 \leq 1 \) then \(\mathbb{P}(Z/n > \varepsilon) \to 0 \) for any \(\varepsilon > 0 \).

(ii) If \(R_0 > 1 \), then there exists \(c > 0 \) such that

\[
\lim \inf \mathbb{P}(Z/n > c) > 0.
\]

Moreover, conditional on the occurrence of a large epidemic,

\[
\frac{S_{\infty}}{n} \xrightarrow{p} v_S(\theta_\infty),
\]

where \(\theta_\infty \) is the solution to a fixed-point equation.
In the case $\mu_R = 0$, the threshold for the emergence of a large epidemic was identified heuristically by Andersson’99, Newman’02 and Volz’07, and rigorously proved by Bohman/Picollelli’12 for bounded degree sequences.
States of the process

- We consider a stochastic process on the given set of vertices, with each vertex \(i \) having \(d_i \) incident half-edges. The key to our analysis is to reveal the edges (i.e., pairings of the half-edges) only as they are needed, just as in a similar analysis in Janson and L.’07 and Janson and L.’09.

- At each time \(t \), each vertex is either susceptible, infective or recovered, and a half-edge has the same type as its vertex. We start at time 0 with some given initial sequence of types of the \(n \) vertices.

- A half-edge not yet paired with another is free – initially all half-edges are free.
Events

- **Infection** Each infective half-edge has an exponential clock with intensity β. When the clock rings, the partner of the half-edge is revealed, chosen uniformly from among the other free half-edges. The two half-edges are connected by an edge, and are no longer free. If the partner is a susceptible half-edge, then its vertex becomes infective, along with all its half-edges.

- **Recovery** Each infective vertex has an exponential clock with intensity ρ. When the clock rings, the vertex and all its half-edges become recovered.
The process ends when there are no further infective vertices.

There may still be free half-edges: in order to find the graph, these should be paired uniformly at random. This will not affect the course of the epidemic.
More notation

- Let S_t, I_t and R_t denote the number of susceptible, infective and recovered individuals at time t.

- Let X_t be the number of free half-edges at time t, and let $X_{S,t}$, $X_{I,t}$ and $X_{R,t}$ denote the number of free susceptible, infective and recovered half-edges.

- So $S_t + I_t + R_t = n$ and $X_{S,t} + X_{I,t} + X_{R,t} = X_t$ for every t.
Parameterisation θ_t

- Under suitable conditions, the processes $S_t/n, \ldots, X_{R,t}/n$ converge to deterministic functions. Their limits are functions of a parameterisation θ_t of time solving an ODE.

- θ_t can be interpreted as the asymptotic probability that a half-edge has not been paired with a (necessarily infective) half-edge by time t, i.e. that an infectious contact has not happened.

- For a given vertex of degree k that is initially susceptible, the probability that the vertex is still susceptible at time t is asymptotically close to θ_t^k.
Recall that

\[\nu_S(\theta) = \alpha_S \sum_{k=0}^{\infty} p_k \theta^k, \]

so at time \(t \) the limiting fraction of susceptibles is \(\nu_S(\theta_t) \).

Similarly,

\[h_S(\theta) = \alpha_S \sum_{k=0}^{\infty} k \theta^k p_k = \theta \nu'_S(\theta), \]

so that at time \(t \) the limiting fraction of free susceptible half-edges is \(h_S(\theta_t) \).
The limiting proportion of all free half-edges is

\[h_X(\theta_t) = \mu \theta_t^2. \]

For free half-edges of the other types, we define

\[h_R(\theta_t) = \mu_R \theta_t + \frac{\mu \rho}{\beta} \theta_t (1 - \theta_t), \]

\[h_I(\theta_t) = \mu \theta_t^2 - h_S(\theta_t) - h_R(\theta_t). \]
The limit functions for infective and recovered vertices are defined as follows.

Let \hat{I}_t be the unique solution to

$$\frac{d}{dt} \hat{I}_t = \frac{\beta h_l(\theta_t) h_S(\theta_t)}{h_X(\theta_t)} - \rho \hat{I}_t, \quad t \geq 0, \quad \hat{I}_0 = \alpha_I,$$

Also set $\hat{R}_t = 1 - v_S(\theta_t) - \hat{I}_t$.
Let
\[p_I(\theta) = \frac{h_I(\theta)}{h_X(\theta)} \]
be the ‘infective pressure’, the proportion of infective free half-edges.

We prove that there is a unique continuously differentiable function \(\theta : [0, \infty) \to [0, 1] \) such that
\[\frac{d}{dt} \theta_t = -\beta \theta_t p_I(\theta_t), \quad \theta_0 = 1. \]

We also prove that there is a unique \(\theta_\infty \in (0, 1) \) with \(h_I(\theta_\infty) = 0 \). Further, \(h_I \) is strictly positive on \((\theta_\infty, 1] \) and strictly negative on \((0, \theta_\infty) \).

Then \(\lim_{t \to \infty} \theta_t = \theta_\infty \).
Epidemics starting with many infectives

Theorem

Suppose $\mu_I > 0$.

- Then, uniformly on $[0, \infty)$,

\[
\begin{align*}
X_{S,t}/n &\xrightarrow{p} h_S(\theta_t), & X_{I,t}/n &\xrightarrow{p} h_I(\theta_t), \\
X_{R,t}/n &\xrightarrow{p} h_R(\theta_t), & S_t/n &\xrightarrow{p} v_S(\theta_t), \\
I_t/n &\xrightarrow{p} \hat{I}_t, & R_t/n &\xrightarrow{p} \hat{R}_t.
\end{align*}
\]

- Consequently, $S_\infty = \lim_{t \to \infty} S_t$ satisfies $S_\infty/n \xrightarrow{p} v_S(\theta_\infty)$.
Epidemics starting with few infectives: $R_0 \leq 1$

- Suppose now that $\mu_I = 0$ but there is initially at least one infective vertex with non-zero degree.

- Recall that

$$R_0 = \frac{\beta}{\rho + \beta} \frac{\alpha \sigma}{\mu} \sum_{k=0}^{\infty} (k - 1)k p_k.$$

- If $R_0 \leq 1$, then the number of susceptible vertices that are ever infected is $o_p(n)$.

Epidemics starting with few infectives: $R_0 > 1$

- We choose a reference value $s_0 < \alpha_S$; if $R_0 > 1$, then the probability that the number of susceptibles falls to $s_0 n$ is bounded away from zero. The time until this occurs is a random variable T_0.

- The epidemic (in real time) starting from few infectives runs “slowly” until T_0, but after that it is almost deterministic, up to the time-shift.

- The exact choice of s_0 is not important, but we have to make one in order to state the result precisely.
Assume $R_0 > 1$.

There is a unique $\theta_\infty \in (0, 1)$ with $h_I(\theta_\infty) = 0$. Further, h_I is strictly positive on $(\theta_\infty, 1)$ and strictly negative on $(0, \theta_\infty)$.

Fix any $s_0 \in (v_S(\theta_\infty), v_S(1))$. There is a unique continuously differentiable function $\theta : \mathbb{R} \to (\theta_\infty, 1)$ such that

$$\frac{d}{dt} \theta_t = -\beta \theta_t p_I(\theta_t), \quad \theta_0 = v_S^{-1}(s_0).$$

Let $T_0 = \inf\{t \geq 0 : S_t \leq ns_0\}$. Then

$$\liminf_{n \to \infty} \mathbb{P}(T_0 < \infty) > 0.$$ Furthermore, if $\sum_{k=1}^\infty kn_{I,k} \to \infty$, then $\mathbb{P}(T_0 < \infty) \to 1$.
Theorem

- Suppose $\mu_I = 0$, but the initial number of infectives is at least 1. Suppose $R_0 > 1$, and let T_0 be as above.

- Conditional on $T_0 < \infty$ we have, uniformly on \mathbb{R},

 $$X_{S,T_0+t/n} \xrightarrow{p} h_S(\theta_t), \quad X_{I,T_0+t/n} \xrightarrow{p} h_I(\theta_t),$$
 $$X_{R,T_0+t/n} \xrightarrow{p} h_R(\theta_t), \quad S_{T_0+t/n} \xrightarrow{p} v_S(\theta_t),$$
 $$I_{T_0+t/n} \xrightarrow{p} \hat{I}_t, \quad R_{T_0+t/n} \xrightarrow{p} \hat{R}_t.$$

- Consequently, conditional on $T_0 < \infty$, the number of susceptibles that escape infection satisfies

 $$S_\infty/n \xrightarrow{p} v_S(\theta_\infty).$$
Conditional on $T_0 = \infty$, $S_0 - S_\infty = o_p(n)$ in the sense that, for all $\epsilon > 0$, $\mathbb{P}(T_0 = \infty, S_0 - S_\infty > \epsilon n) = o(1)$ as $n \to \infty$.

Similarly, $X_{S,0} - X_{S,\infty} = o_p(n)$, $\sup_{t \geq 0} X_{I,t} = o_p(n)$, $\sup_{t \geq 0} (X_0 - X_t) = o_p(n)$ conditional on $T_0 = \infty$.
A special case: the giant component

In the special case $\rho = 0$, $\mu_I = 0$, and $\mu_R = 0$ (so almost all individuals are susceptible at time 0 and there are no recoveries), the above equation for θ_∞ becomes

$$\theta_\infty v'_S(\theta_\infty) - \mu \theta_\infty^2 = \sum_{k=1}^{\infty} kp_k \theta_k^\infty - \lambda \theta_\infty^2 = 0,$$

which is the well known equation for the size of the giant component in the configuration model.
Volz’s equations

The differential equation for θ first appeared in biological literature in Miller’11. It was found as a simplification of the following system of three equations used in Volz’08 to describe the SIR process.

$$\frac{d}{dt}\theta_t = -\beta p_{I,t}\theta_t,$$

$$\frac{d}{dt}p_{I,t} = p_{I,t}\left[\beta p_{S,t}\theta_t \frac{v''_S(\theta_t)}{v'_S(\theta_t)} - (\beta + \rho) + \beta p_{I,t}\right],$$

$$\frac{d}{dt}p_{S,t} = \beta p_{S,t}p_{I,t}\left[1 - \theta_t \frac{v''_S(\theta_t)}{v'_S(\theta_t)}\right].$$
In Volz’s equations, $p_{I,t}$ is the probability that an edge is connected to an infected node given that it has not transmitted infection to the target node (for us, $p_{I,t} = X_{I,t}/X_t$), and $p_{S,t}$ is the probability that an edge is connected to a susceptible node given that it has not transmitted infection to the target node (for us, $p_{S,t} = X_{S,t}/X_t$).

Volz’s and Miller’s equations assume that initially there are no recovered individuals.

Both Volz and Miller assume deterministic spread of disease, and they do not give a formal proof of their equations.
This model was also studied by Decreusefond, Dhersin, Moyal and Tran’12. They analyse a more complicated, measure-valued process corresponding to the number of edges between different types of vertices.

Decreusefond, Dhersin, Moyal and Tran’12 prove a law of large numbers for their measure-valued process. As a corollary, their result yields convergence of the relevant quantities to Volz’s equations, under the assumption that the fifth moment of the distribution of susceptible vertices is uniformly bounded.
Near-criticality

Here we take infection rate β_n and recovery rate ρ_n and look at what happens just above the ‘large epidemic’ threshold, that is, where the basic reproductive number is just above 1.

$$R_0^{(n)} = \frac{\beta_n}{\rho_n + \beta_n} \frac{\sum_{k=0}^{\infty} (k - 1)kn_{S,k}}{\sum_{k=0}^{\infty} kn_k}.$$

We assume that $n(R_0 - 1)^3 \to \infty$.

Probability of a large epidemic

From the theory of branching processes, at the start of an epidemic, each infective individual leads to a large outbreak with probability of the order $R_0 - 1$.

If the size n of the population is very large, with the initial total infectious degree $X_{I,0}$ much larger than $(R_0 - 1)^{-1}$, then a large epidemic will occur with high probability.

If the initial total infectious degree is much smaller than $(R_0 - 1)^{-1}$, then the outbreak will be contained with high probability.

In the intermediate case, a large epidemic can occur with positive probability, of the order $\exp(-cX_{I,0}(R_0 - 1))$, for some positive constant c.
Size of a large epidemic

Broadly speaking, if $X_{I,0}$ is much larger than $n(R_0 - 1)^2$, then the total number of people infected will be proportional to $(nX_{I,0})^{1/2}$. If $X_{I,0}$ is much smaller than $n(R_0 - 1)^2$ then, in the event that there is a large epidemic, the total number of people infected will be proportional to $n(R_0 - 1)$.

The intermediate case where $X_{I,0}$ and $n(R_0 - 1)^2$ are of the same order ‘connects’ the two extremal cases.

Note that, if $X_{I,0}$ is of the same or larger order of magnitude than $n(R_0 - 1)^2$, then $X_{I,0}(R_0 - 1)$ is very large, so a large epidemic does occur with high probability.
Our results will be stated in terms of the related quantity

\[\alpha_n = (R_0^{(n)} - 1) \frac{\rho_n + \beta_n}{\beta_n} \frac{\sum_{k=0}^\infty kn_k}{n_S}. \]

Under our assumptions, both \(\frac{\rho_n + \beta_n}{\beta_n} \) and \(\frac{\sum_{k=0}^\infty kn_k}{n_S} \) are bounded, and bounded away from zero, so \(\alpha_n \) is equivalent to \(R_0^{(n)} - 1 \) as a measure of distance from criticality.
Assumptions, near-critical regime

(D1) The degree of a randomly chosen initially susceptible vertex converges weakly to a probability distribution \((p_k)_{k=0}^\infty \) with a finite and positive mean \(\lambda \), i.e. \(n_{S,k}/n_S \to p_k \ (k \geq 0) \), where \(\sum_{k=0}^\infty kp_k = \lambda \).

(D2) The third moment of the degree of a randomly chosen susceptible vertex is uniformly integrable as \(n \to \infty \). That is, given \(\varepsilon > 0 \), there exists \(M > 0 \) such that, for any \(n \),

\[
\sum_{k>M} k^3 \frac{n_{S,k}}{n_S} < \varepsilon.
\]

(D3) The second moment of the degree of a randomly chosen vertex is uniformly bounded, i.e. \(\sum_{k=0}^\infty k^2 n_k = O(n) \).
Assumptions, near-critical regime

(D4) As $n \to \infty$, $\alpha_n \to 0$ and $n_S\alpha_n^3 \to \infty$.

(D5) The total degree of infective vertices $kn_{I,k} = o(n)$, and the limit

$$\nu = \lim_{n \to \infty} \sum_{k=0}^{\infty} kn_{I,k} / n_S\alpha_n^2$$

exists (but may be 0 or ∞). Furthermore, either $\nu = 0$ or

$$d_{I,*} = \max\{ k : n_{I,k} \geq 1 \} = o\left(\sum_{k=0}^{\infty} n_{I,k} \right).$$

(D6) $p_0 + p_1 + p_2 < 1$.

(D7) $\lim \inf_{n \to \infty} n_S / n > 0$.
Let $\lambda_3 = \sum_{k=0}^{\infty} k(k-1)(k-2)p_k$; then $\lambda_3 \in (0, \infty)$.

Theorem

Suppose that (D1)–(D7) hold. Let Z be the total number of susceptible vertices that ever get infected.

1. If $\nu = 0$, then there exists a sequence $\varepsilon_n \to 0$ such that, for each n, w.h.p. one of the following holds.

 (i) $\frac{Z}{nS\alpha_n} < \varepsilon_n$ (the epidemic is small and ends prematurely), or

 (ii) $|\frac{Z}{nS\alpha_n} - \frac{2\lambda}{\lambda_3}| < \varepsilon_n$ (the epidemic is large and its size is well concentrated).
Result for $\nu > 0$

In the case $\nu > 0$, the epidemic is always large, and its size is again well concentrated.

Theorem (continued)

2. If $0 < \nu < \infty$, then $\frac{Z}{nS\alpha_n} \xrightarrow{p} \frac{\lambda(1+\sqrt{1+2\nu\lambda_3})}{\lambda_3}$.

3. If $\nu = \infty$, then $\frac{Z}{(nS\sum_{k=0}^{\infty} kn_{l, k})^{1/2}} \xrightarrow{p} \frac{\sqrt{2}\lambda}{\sqrt{\lambda_3}}$.

Moreover, in cases 1(b), 2 and 3, the numbers Z_k of susceptible vertices of each degree $k > 0$ that get infected satisfy, w.h.p.,

$$\sum_{k=0}^{\infty} \left| \frac{Z_k}{Z} \frac{k p_k}{\lambda} - 1 \right| < \varepsilon.$$
In the case $\nu = 0$, the epidemic may be ‘large’ or ‘small’. The next result yields an asymptotic formula for the probability of a small epidemic in this case.

Theorem

Suppose assumptions (D1)–(D7) are satisfied, and that $\nu = 0$.

1. If $\alpha_n \sum_{k=0}^{\infty} kn_{I,k} \to 0$, then case 1(a) in the previous theorem occurs w.h.p.

2. If $\alpha_n \sum_{k=0}^{\infty} kn_{I,k} \to \infty$, then case 1(b) in the previous theorem occurs w.h.p.
Theorem (continued)

3. If $\alpha_n \sum_{k=0}^{\infty} kn_{I,k}$ is bounded above and below, then both cases 1(a) and 1(b) occur with probabilities bounded away from 0 and 1. Furthermore, if $d_{I,*} = o(\sum_{k=0}^{\infty} kn_{I,k})$, then the probability that case 1(a) occurs is

$$\exp \left(-\frac{\lambda_2 + \lambda + \sum_{k=0}^{\infty} kn_{R,k}/n_S}{\lambda_2 \lambda_3} \alpha_n \sum_{k=0}^{\infty} kn_{I,k} \right) + o(1).$$

Moreover, in the case where the epidemic is small, $Z = O_p(\alpha_n^{-2})$.

In the simple graph case, for part 3. we need the additional assumptions: $\sum_{k\geq 1} k^2 n_{I,k} = o(n)$ and $\sum_{k\geq \alpha_n^{-1}} k^2 n_{R,k} = o(n)$.