Conformal maps – Computability and Complexity

Ilia Binder
University of Toronto

Based on joint work with M. Braverman (Princeton), C. Rojas (Universidad Andres Bello), and M. Yampolsky (University of Toronto)

April 6, 2016
Conformal maps: the objects

Inside the domain: computability and complexity

Boundary behaviour: harmonic measure

Boundary behaviour: Caratheodory extension

Examples
The starting point: what are we computing?

1. The Riemann map: "given" a simply connected domain Ω and a point $w \in \Omega$, "compute" the conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$
The starting point: what are we computing?

1. The Riemann map: ”given” a simply connected domain Ω and a point $w \in \Omega$, ”compute” the conformal map $f : (D, 0) \mapsto (\Omega, w)$ (with $f'(0) > 0$, just to fix it).

2. Carathéodory extension of f.

Given by Carathéodory Theorem: Let $\Omega \subset \mathbb{C}$ be a simply-connected domain. A conformal map $f : (D, 0) \mapsto (\Omega, w)$ extends to a continuous map $D \mapsto \Omega$ iff $\partial \Omega$ is locally connected.

A set $K \subset \mathbb{C}$ is called locally connected if there exists a modulus of local connectivity $m(\delta)$: a non-decreasing function decaying to 0 as $\delta \to 0$ and such that for any $x, y \in K$ with $|x - y| < \delta$ one can find a connected $C \subset K$ containing x and y with $\text{diam} C < m(\delta)$.

f extends to a homeomorphism $D \mapsto \Omega$ iff $\partial \Omega$ is a Jordan curve.

3. The harmonic measure on $\partial \Omega$ at w: first boundary hitting distribution of Brownian motion started at w (or one of a score of other definitions).
The starting point: what are we computing?

1. *The Riemann map*: "given" a simply connected domain Ω and a point $w \in \Omega$, "compute" the conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ (with $f'(0) > 0$, just to fix it).

2. *Carathéodory extension of f*. Given by

Carthéodory Theorem: Let $\Omega \subset \mathbb{C}$ be a simply-connected domain. A conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ extends to a continuous map $\overline{\mathbb{D}} \mapsto \overline{\Omega}$ iff $\partial \Omega$ is locally connected.
The starting point: what are we computing?

1. **The Riemann map**: "given" a simply connected domain \(\Omega \) and a point \(w \in \Omega \), "compute" the conformal map \(f : (D, 0) \mapsto (\Omega, w) \) (with \(f'(0) > 0 \), just to fix it).

2. **Carathéodory extension of \(f \)**. Given by

Carathéodory Theorem: Let \(\Omega \subset \mathbb{C} \) be a simply-connected domain. A conformal map \(f : (D, 0) \mapsto (\Omega, w) \) extends to a continuous map \(\overline{D} \mapsto \overline{\Omega} \) iff \(\partial \Omega \) is locally connected.

A set \(K \subset \mathbb{C} \) is called **locally connected** if there exists **modulus of local connectivity** \(m(\delta) \): a non-decreasing function decaying to 0 as \(\delta \to 0 \) and such that for any \(x, y \in K \) with \(|x - y| < \delta \) one can find a connected \(C \subset K \) containing \(x \) and \(y \) with \(\text{diam} \ C < m(\delta) \).
The starting point: what are we computing?

1. **The Riemann map**: "given" a simply connected domain Ω and a point $w \in \Omega$, "compute" the conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ (with $f'(0) > 0$, just to fix it).

2. **Carathéodory extension of f**. Given by

 Carthéodory Theorem: Let $\Omega \subset \mathbb{C}$ be a simply-connected domain. A conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ extends to a continuous map $\overline{\mathbb{D}} \mapsto \overline{\Omega}$ iff $\partial \Omega$ is locally connected.

 A set $K \subset \mathbb{C}$ is called **locally connected** if there exists **modulus of local connectivity** $m(\delta)$: a non-decreasing function decaying to 0 as $\delta \to 0$ and such that for any $x, y \in K$ with $|x - y| < \delta$ one can find a connected $C \subset K$ containing x and y with $\text{diam} \, C < m(\delta)$.

 f extends to a homeomorphism $\overline{\mathbb{D}} \mapsto \overline{\Omega}$ iff $\partial \Omega$ is a Jordan curve.
The starting point: what are we computing?

1. **The Riemann map**: "given" a simply connected domain Ω and a point $w \in \Omega$, "compute" the conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ (with $f'(0) > 0$, just to fix it).

2. **Carathéodory extension of f**. Given by

 Carathéodory Theorem: Let $\Omega \subset \mathbb{C}$ be a simply-connected domain. A conformal map $f : (\mathbb{D}, 0) \mapsto (\Omega, w)$ extends to a continuous map $\overline{\mathbb{D}} \mapsto \overline{\Omega}$ iff $\partial \Omega$ is locally connected.

 A set $K \subset \mathbb{C}$ is called **locally connected** if there exists **modulus of local connectivity** $m(\delta)$: a non-decreasing function decaying to 0 as $\delta \to 0$ and such that for any $x, y \in K$ with $|x - y| < \delta$ one can find a connected $C \subset K$ containing x and y with $\text{diam} \ C < m(\delta)$.

 f extends to a homeomorphism $\overline{\mathbb{D}} \mapsto \overline{\Omega}$ iff $\partial \Omega$ is a Jordan curve.

3. **The harmonic measure** on $\partial \Omega$ at w: first boundary hitting distribution of Brownian motion started at w (or one of a score of other definitions).
Computing the Riemann map

Constructive Riemann Mapping Theorem. (Hertling, 1997) The following are equivalent:

(i) Ω is a lower-computable open set, $\partial \Omega$ is a lower-computable closed set, and $w_0 \in \Omega$ is a computable point;

(ii) The maps g and f are both computable conformal bijections.
Computing the Riemann map

Constructive Riemann Mapping Theorem. (Hertling, 1997) The following are equivalent:

(i) Ω is a lower-computable open set, $\partial \Omega$ is a lower-computable closed set, and $w_0 \in \Omega$ is a computable point;

(ii) The maps g and f are both computable conformal bijections.

Idea of the proof The lower-computability of Ω implies that one can compute a sequence of rational polygonal domains Ω_n such that $\Omega = \bigcup \Omega_n$. The maps $f_n : \mathbb{D} \mapsto \Omega_n$ are explicitly computable (by Schwarz-Christoffel, for example) and converge to f. To check that $f_n(z)$ approximates $f(z)$ well enough, we just need to approximate the boundary from below by centers of rational balls intersecting it.
Computing the Riemann map

Constructive Riemann Mapping Theorem. (Hertling, 1997) The following are equivalent:

(i) Ω is a lower-computable open set, $\partial \Omega$ is a lower-computable closed set, and $w_0 \in \Omega$ is a computable point;

(ii) The maps g and f are both computable conformal bijections.

Idea of the proof The lower-computability of Ω implies that one can compute a sequence of rational polygonal domains Ω_n such that $\Omega = \bigcup \Omega_n$. The maps $f_n : \mathbb{D} \mapsto \Omega_n$ are explicitly computable (by Schwarz-Christoffel, for example) and converge to f. To check that $f_n(z)$ approximates $f(z)$ well enough, we just need to approximate the boundary from below by centers of rational balls intersecting it. Other direction: just follows from distortion theorems.
Question: How hard is it to compute a conformal map g in a given point $w \in \Omega$?
Question: How hard is it to compute a conformal map g in a given point $w \in \Omega$?

P – computable in time polynomial in the length of the input.
NP – solution can be checked in polynomial time.
$\#P$ – can be reduced to counting the number of satisfying assignments for a given propositional formula ($\#SAT$).
$PSPACE$ – solvable in space polynomial in the input size.
EXP – solvable in time 2^{nc} for some c (n – the length of input).
Question: How hard is it to compute a conformal map g in a given point $w \in \Omega$?

P – computable in time polynomial in the length of the input.

NP – solution can be checked in polynomial time.

$\#P$ – can be reduced to counting the number of satisfying assignments for a given propositional formula ($\#SAT$).

$PSPACE$ – solvable in space polynomial in the input size.

EXP – solvable in time 2^{nc} for some c (n – the length of input).

KNOWN: $P \neq EXP$.

CONJECTURED: $P \subset NP \subset \#P \subset PSPACE \subset EXP$.
Theorem (B-Braverman-Yampolsky). Suppose there is an algorithm A that given a simply-connected domain Ω with a linear-time computable boundary, a point $w_0 \in \Omega$ with $\text{dist}(w_0, \partial \Omega) > \frac{1}{2}$ and a number n, computes $20n$ digits of the conformal radius $f'(0))$, then we can use one call to A to solve any instance of a $\#\text{SAT}(n)$ with a linear time overhead. In other words, $\#P$ is poly-time reducible to computing the conformal radius of a set. Any algorithm computing values of the uniformization map will also compute the conformal radius with the same precision, by Distortion Theorem.
Theorem (B-Braverman-Yampolsky). There is an algorithm A that computes the uniformizing map in the following sense: Let Ω be a bounded simply-connected domain, and $w_0 \in \Omega$. Assume that the boundary of a simply connected domain Ω, $\partial \Omega$, $w_0 \in \Omega$, and $w \in \Omega$ are provided to A by an oracle. Then A computes $g(w)$ with precision n with complexity $PSPACE(n)$. The algorithm uses solution of Dirichlet problem with random walk and de-randomization. Later improved by Rettinger to $\#P$.

An upper bound on computational complexity
An upper bound on computational complexity

Theorem (B-Braverman-Yampolsky). There is an algorithm A that computes the uniformizing map in the following sense:

Let Ω be a bounded simply-connected domain, and $w_0 \in \Omega$. Assume that the boundary of a simply connected domain Ω, $\partial \Omega$, $w_0 \in \Omega$, and $w \in \Omega$ are provided to A by an oracle. Then A computes $g(w)$ with precision n with complexity $PSPACE(n)$.

The algorithm uses solution of Dirichlet problem with random walk and de-randomization.
An upper bound on computational complexity

Theorem (B-Braverman-Yampolsky). There is an algorithm A that computes the uniformizing map in the following sense: Let Ω be a bounded simply-connected domain, and $w_0 \in \Omega$. Assume that the boundary of a simply connected domain Ω, $\partial \Omega$, $w_0 \in \Omega$, and $w \in \Omega$ are provided to A by an oracle. Then A computes $g(w)$ with precision n with complexity $PSPACE(n)$.

The algorithm uses solution of Dirichlet problem with random walk and de-randomization.

Later improved by Rettinger to $\#P$.
The proof of lower bound

For a propositional formula Φ with n variables, let $L \subset \{0, 1, \ldots, 2^n - 1\}$ be the set of numbers corresponding to its satisfying instances. Let k be the number of elements of L.
The proof of lower bound

For a propositional formula Φ with n variables, let $L \subset \{0, 1, \ldots, 2^n - 1\}$ be the set of numbers corresponding to its satisfying instances. Let k be the number of elements of L.

Let Ω_L be defined as

$$\mathbb{D} \setminus \bigcup_{l \in L} \{ |z - \exp(2\pi il2^{-n})| \leq 2^{-10n} \},$$

the unit disk with k very small and spaced out half balls removed.
The proof of lower bound

For a propositional formula Φ with n variables, let $L \subset \{0, 1, \ldots, 2^n - 1\}$ be the set of numbers corresponding to its satisfying instances. Let k be the number of elements of L. Let Ω_L be defined as $\mathbb{D} \setminus \bigcup_{l \in L} \{ |z - \exp(2\pi il 2^{-n})| \leq 2^{-10n} \}$, the unit disk with k very small and spaced out half balls removed.

The key estimate:

If $f : (\mathbb{D}, 0) \rightarrow (\Omega_L, 0)$ is conformal, $f'(0) > 0$ and n is large enough, then

$$|f'(0) - 1 + k 2^{-20n-1}| < \frac{1}{100} 2^{-20n}.$$
The proof of lower bound

For a propositional formula Φ with n variables, let $L \subset \{0, 1, \ldots, 2^n - 1\}$ be the set of numbers corresponding to its satisfying instances. Let k be the number of elements of L. Let Ω_L be defined as

$$\mathbb{D} \setminus \bigcup_{l \in L} \{|z - \exp(2\pi il2^{-n})| \leq 2^{-10n}\},$$

the unit disk with k very small and spaced out half balls removed.

The key estimate: if $f : (\mathbb{D}, 0) \rightarrow (\Omega_L, 0)$ is conformal, $f'(0) > 0$ and n is large enough, then

$$|f'(0) - 1 + k2^{-20n-1}| < \frac{1}{100}2^{-20n}.$$

The boundary of Ω_L is computable in linear time, given the access to Φ. The estimate implies that using the algorithm A we can evaluate $|L| = k$, and solve the $\#SAT$ problem on Φ.
Computability of harmonic measure

A measure μ on a metric space X is called *computable* if for any computable function ϕ, the integral $\int_X \phi \, d\mu$ is computable.

Theorem (B-Braverman-Rojas-Yampolsky). If a closed set $K \subset \mathbb{C}$ is computable, uniformly perfect, and has a connected complement, then in the presence of oracle for $w \not\in K$, the harmonic measure of $\Omega = \mathbb{C} \setminus K$ at w_0 is computable.

A compact set $K \subset \mathbb{C}$ which contains at least two points is uniformly perfect if there exists some $C > 0$ such that for any $x \in K$ and $r > 0$, we have $(B(x,Cr) \setminus B(x,r)) \cap K = \emptyset = \Rightarrow K \subset B(x,r)$.

In particular, every connected set is uniformly perfect. We do not assume that Ω is simply-connected, but we need the uniform perfectness of the complement: there exists a computable regular domain for which the harmonic measure is not computable.
Computability of harmonic measure

A measure μ on a metric space X is called *computable* if for any computable function ϕ, the integral $\int_X \phi \, d\mu$ is computable.

Theorem (B-Braverman-Rojas-Yampolsky). If a closed set $K \subset \mathbb{C}$ is computable, uniformly perfect, and has a connected complement, then in the presence of oracle for $w \notin K$, the harmonic measure of $\Omega = \hat{\mathbb{C}} \setminus K$ at w_0 is computable.
Computability of harmonic measure

A measure μ on a metric space X is called \textit{computable} if for any computable function ϕ, the integral $\int_X \phi \, d\mu$ is computable.

Theorem (B-Braverman-Rojas-Yampolsky). If a closed set $K \subset \mathbb{C}$ is computable, uniformly perfect, and has a connected complement, then in the presence of oracle for $w \notin K$, the harmonic measure of $\Omega = \hat{\mathbb{C}} \setminus K$ at w_0 is computable.

A compact set $K \subset \mathbb{C}$ which contains at least two points is \textbf{uniformly perfect} if there exists some $C > 0$ such that for any $x \in K$ and $r > 0$, we have

$$\left(B(x, Cr) \setminus B(x, r) \right) \cap K = \emptyset \implies K \subset B(x, r).$$

In particular, every connected set is uniformly perfect.
Computability of harmonic measure

A measure μ on a metric space X is called \textit{computable} if for any computable function ϕ, the integral $\int_X \phi \, d\mu$ is computable.

Theorem (B-Braverman-Rojas-Yampolsky). If a closed set $K \subset \mathbb{C}$ is computable, uniformly perfect, and has a connected complement, then in the presence of oracle for $w \notin K$, the harmonic measure of $\Omega = \hat{\mathbb{C}} \setminus K$ at w_0 is computable.

A compact set $K \subset \mathbb{C}$ which contains at least two points is \textbf{uniformly perfect} if there exists some $C > 0$ such that for any $x \in K$ and $r > 0$, we have

$$\left(B(x, Cr) \setminus B(x, r) \right) \cap K = \emptyset \implies K \subset B(x, r).$$

In particular, every connected set is uniformly perfect.

We do not assume that Ω is simply-connected, but we need the uniform perfectness of the complement: there exists a computable regular domain for which the harmonic measure is not computable.
Approximating harmonic measure: capacity density condition.

Theorem (Pommerenke, 1979): For a domain with uniformly perfect boundary there exists a constant $\nu = \nu(C) < 1$ such that for any $y \in \Omega$

$$
P[|B_T^y - y| \geq 2 \text{dist}(y, \partial \Omega)] < \nu.
$$

Here B_T^y is the first hitting of the boundary by Brownian motion started at y.
Approximating harmonic measure: capacity density condition.

Theorem (Pommerenke, 1979): For a domain with uniformly perfect boundary there exists a constant $\nu = \nu(C) < 1$ such that for any $y \in \Omega$

$$P[|B^y_T - y| \geq 2 \text{dist}(y, \partial \Omega)] < \nu.$$

Here B^y_T is the first hitting of the boundary by Brownian motion started at y.

By the strong Markov property of the Brownian motion, for any n

$$P \left[|B^y_T - y| \geq 2^n \text{dist}(y, \partial \Omega) \right] < \nu^n.$$
Approximating harmonic measure: capacity density condition.

Theorem (Pommerenke, 1979): For a domain with uniformly perfect boundary there exists a constant \(\nu = \nu(C) < 1 \) such that for any \(y \in \Omega \)

\[
P[|B^y_T - y| \geq 2 \text{dist}(y, \partial \Omega)] < \nu.
\]

Here \(B^y_T \) is the first hitting of the boundary by Brownian motion started at \(y \).

By the strong Markov property of the Brownian motion, for any \(n \)

\[
P \left[|B^y_T - y| \geq 2^n \text{dist}(y, \partial \Omega) \right] < \nu^n.
\]

Take any computable \(\phi \). We need to compute \(E(\phi(B_T)) \).
Approximating harmonic measure: capacity density condition.

Theorem (Pommerenke, 1979): For a domain with uniformly perfect boundary there exists a constant \(\nu = \nu(C') < 1 \) such that for any \(y \in \Omega \)

\[
P[|B^y_T - y| \geq 2 \text{dist}(y, \partial \Omega)] < \nu.
\]

Here \(B^y_T \) is the first hitting of the boundary by Brownian motion started at \(y \).

By the strong Markov property of the Brownian motion, for any \(n \)

\[
P \left[|B^y_T - y| \geq 2^n \text{dist}(y, \partial \Omega) \right] < \nu^n.
\]

Take any computable \(\phi \). We need to compute \(\mathbb{E}(\phi(B_T)) \). Compute the interior polygonal \(\delta \)-approximation \(\Omega' \) to \(\Omega \) for small enough \(\delta \). Then it is easy to see that \(\mathbb{E}(\phi(B_T) - \phi(B_{T'})) \) is small, since with high probability \(B_T \) is close to \(B_{T'} \).
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Logical to assume that $m(\delta)$ for $\partial \Omega$ has to be computable.
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary? Logical to assume that $m(\delta)$ for $\partial \Omega$ has to be computable. Wrong!
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Logical to assume that $m(\delta)$ for $\partial \Omega$ has to be computable. Wrong!

Carathéodory modulus. A non-decreasing function $\eta(\delta)$ is called the Carathéodory modulus of Ω if $\eta(\delta) \to 0$ as $\delta \to 0$ and if for every crosscut γ with $\text{diam}(\gamma) < \delta$ we have $\text{diam} N_\gamma < \eta(\delta)$. Here N_γ is the component of $\Omega \setminus \gamma$ not containing w_0.
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Logical to assume that $m(\delta)$ for $\partial \Omega$ has to be computable. *Wrong!*

Carathéodory modulus. A non-decreasing function $\eta(\delta)$ is called the *Carathéodory modulus of Ω* if $\eta(\delta) \to 0$ as $\delta \to 0$ and if for every crosscut γ with $\text{diam}(\gamma) < \delta$ we have $\text{diam } N_\gamma < \eta(\delta)$. Here N_γ is the component of $\Omega \setminus \gamma$ not containing w_0.

$\eta(\delta) \leq m(\delta)$, but $\eta(\delta)$ exists iff $m(\delta)$ exists.
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Logical to assume that $m(\delta)$ for $\partial \Omega$ has to be computable. Wrong!

Carathéodory modulus. A non-decreasing function $\eta(\delta)$ is called the Carathéodory modulus of Ω if $\eta(\delta) \to 0$ as $\delta \to 0$ and if for every crosscut γ with $\text{diam}(\gamma) < \delta$ we have $\text{diam} \ N_\gamma < \eta(\delta)$. Here N_γ is the component of $\Omega \setminus \gamma$ not containing w_0.

$\eta(\delta) \leq m(\delta)$, but $\eta(\delta)$ exists iff $m(\delta)$ exists.

Closer related to the Modulus of local connectivity $m'(\delta)$ of $\mathbb{C} \setminus \Omega$: $m'(\delta) \leq 2\eta(\delta) + \delta$.

Theorem (B-Rojas-Yampolsky)

The Carathéodory extension of $f : D \to \Omega$ is computable iff f is computable and there exists a computable Carathéodory modulus of Ω. Furthermore, there exists a domain Ω with computable Carathéodory modulus but no computable modulus of local connectivity.
Carathéodory extension.

What information about Ω does one need to compute f up to the boundary?
Logical to assume that $m(\delta)$ for $\partial\Omega$ has to be computable. **Wrong!**

Carathéodory modulus. A non-decreasing function $\eta(\delta)$ is called the *Carathéodory modulus of Ω* if $\eta(\delta) \to 0$ as $\delta \to 0$ and if for every crosscut γ with $\text{diam}(\gamma) < \delta$ we have $\text{diam} N_\gamma < \eta(\delta)$. Here N_γ is the component of $\Omega \setminus \gamma$ not containing w_0.

$\eta(\delta) \leq m(\delta)$, but $\eta(\delta)$ exists iff $m(\delta)$ exists.

Closer related to the Modulus of local connectivity $m'(\delta)$ of $C \setminus \Omega$: $m'(\delta) \leq 2\eta(\delta) + \delta$.

Theorem (B-Rojas-Yampolsky) The Carathéodory extension of $f : \mathbb{D} \to \Omega$ is computable iff f is computable and there exists a computable Carathéodory modulus of Ω.
Furthermore, there exists a domain Ω with computable Carathéodory modulus but no computable modulus of local connectivity.
General simply-connected domains: Carathéodory metric.

Carathéodory metric on \((\Omega, w)\):

\[
\text{dist}_C(z_1, z_2) = \inf \text{diam}(\gamma),
\]

where \(\gamma\) is a closed curve or crosscut in \(\Omega\) separating \(\{z_1, z_2\}\) from \(w_0\). (Defined as continuous extension when one of the points is equal to \(w_0\).)
General simply-connected domains: Carathéodory metric.

Carathéodory metric on \((\Omega, w)\):

$$\text{dist}_C(z_1, z_2) = \inf \text{diam}(\gamma),$$

where \(\gamma\) is a closed curve or crosscut in \(\Omega\) separating \(\{z_1, z_2\}\) from \(w_0\).

(Defined as continuous extension when one of the points is equal to \(w_0\).)

The closure of \(\Omega\) in Carathéodory metric is called the Carathéodory compactification, \(\hat{\Omega}\). It is obtained from \(\Omega\) by adding the prime ends.
General simply-connected domains: Carathéodory metric.

Carathéodory metric on \((\Omega, w)\):

\[
\text{dist}_C(z_1, z_2) = \inf \text{diam}(\gamma),
\]

where \(\gamma\) is a closed curve or crosscut in \(\Omega\) separating \(\{z_1, z_2\}\) from \(w_0\). (Defined as continuous extension when one of the points is equal to \(w_0\).)

The closure of \(\Omega\) in Carathéodory metric is called the Carathéodory compactification, \(\hat{\Omega}\). It is obtained from \(\Omega\) by adding the prime ends.

Carathéodory Theorem: \(f\) is extendable to a homeomorphism \(\hat{f} : \overline{D} \mapsto \hat{\Omega}\).
General simply-connected domains: Carathéodory metric.

Carathéodory metric on (Ω, w):

$$\text{dist}_C(z_1, z_2) = \inf \text{diam}(\gamma),$$

where γ is a closed curve or crosscut in Ω separating $\{z_1, z_2\}$ from w_0. (Defined as continuous extension when one of the points is equal to w_0.)

The closure of Ω in Carathéodory metric is called the **Carathéodory compactification**, $\hat{\Omega}$. It is obtained from Ω by adding the prime ends.

Carathéodory Theorem: f is extendable to a homeomorphism $\hat{f} : \overline{D} \mapsto \hat{\Omega}$.

Computable Carathéodory Theorem (B-Rojas-Yampolsky): In the presence of oracles for w_0 and for $\partial \Omega$, both \hat{f} and $\hat{g} = \hat{f}^{-1}$ are computable.
Warshawski’s theorems

Oscillation of f near boundary:

$$\omega(r) := \sup_{|z_0|=1, |z_1|<1, |z_2|<1, |z_1-z_0|<r, |z_2-z_0|<r} |f(z_1) - f(z_2)|.$$
Warshawski’s theorems

Oscillation of f near boundary:

$$\omega(r) := \sup_{|z_0|=1, |z_1|<1, |z_2|<1, |z_1-z_0|<r, |z_2-z_0|<r} |f(z_1) - f(z_2)|.$$

Warshawski’s Theorem (1950): $\omega(r) \leq \eta \left(\left(\frac{2\pi A}{\log 1/r} \right)^{1/2} \right)$, for all $r \in (0, 1)$.

Here A is the area of Ω, and $\eta(\delta)$ is Carathéodory modulus.
Warshawski’s theorems

Oscillation of f near boundary:

$$\omega(r) := \sup_{|z_0|=1, |z_1|<1, |z_2|<1, |z_1-z_0|<r, |z_2-z_0|<r} |f(z_1) - f(z_2)|.$$

Warshawski’s Theorem (1950): $\omega(r) \leq \eta \left(\left(\frac{2\pi A}{\log 1/r} \right)^{1/2} \right)$, for all $r \in (0, 1)$.

Here A is the area of Ω, and $\eta(\delta)$ is Carathéodory modulus.

The estimate $|f(z) - f((1 - r)z)| \leq \omega(r)$ for $|z| = 1$ allows one to compute $f(z)$ using $f(rz)$ for r close to 1.
Other direction: Lavrentieff-type estimate

A refinement of Lavrentieff estimate (1936) (Also proven by Ferrand (1942) and Beurling in the 50ties). Let $M = \text{dist}(\partial \Omega, w_0)$, γ be a crosscut with $\text{dist}(\partial \Omega, w_0) \geq M/2$, $\epsilon^2 < M/4$. Then

$$\text{diam}(\gamma) < \epsilon^2 \implies \text{diam}(f^{-1}(N_\gamma)) \leq \frac{30\epsilon}{\sqrt{M}}.$$
Other direction: Lavrentieff-type estimate

A refinement of Lavrentieff estimate (1936) (Also proven by Ferrand (1942) and Beurling in the 50ties). Let $M = \text{dist}(\partial \Omega, w_0)$, γ be a crosscut with $\text{dist}(\partial \Omega, w_0) \geq M/2$, $\epsilon^2 < M/4$. Then

$$\text{diam}(\gamma) < \epsilon^2 \implies \text{diam}(f^{-1}(N_\gamma)) \leq \frac{30\epsilon}{\sqrt{M}}.$$

Essentially, \hat{f}^{-1} is $1/2$-Hölder as a map from $\hat{\Omega}$ to $\overline{\mathbb{D}}$.
Other direction: Lavrentieff-type estimate

A refinement of Lavrentieff estimate (1936) (Also proven by Ferrand (1942) and Beurling in the 50ties). Let $M = \text{dist}(\partial\Omega, w_0)$, γ be a crosscut with $\text{dist}(\partial\Omega, w_0) \geq M/2$, $\epsilon^2 < M/4$. Then

$$\text{diam}(\gamma) < \epsilon^2 \implies \text{diam}(f^{-1}(N_\gamma)) \leq \frac{30\epsilon}{\sqrt{M}}.$$

Essentially, \hat{f}^{-1} is $1/2$-Hölder as a map from $\hat{\Omega}$ to \overline{D}.

The estimate implies that

$$\text{diam}(N_\gamma) \leq 2\omega(\text{diam}(f^{-1}(N_\gamma))) \leq 2\omega\left(\frac{30\epsilon}{\sqrt{M}}\right).$$

Thus, if f is computable up to the boundary, $2\omega\left(\frac{30\epsilon}{\sqrt{M}}\right)$ is a computable Carathéodory modulus.
A domain with computable boundary and noncomputable harmonic measure.

Let $B \subset \mathbb{N}$ be a lower-computable, non-computable set. We modify the unit circle by inserting the following "gates" at $\exp 2\pi i \left(2^{-n}\right)$:
A domain with computable boundary and noncomputable harmonic measure.

Let $B \subset \mathbb{N}$ be a lower-computable, non-computable set. We modify the unit circle by inserting the following ”gates” at $\exp 2\pi i \left(2^{-n}\right)$:

Specifically, if $n \in B$ is enumerated at stage j we take the interval $\left[\exp 2\pi i \left(2^{-n} - 2^{-2n}\right), \exp 2\pi i \left(2^{-n} + 2^{-2n}\right)\right]$ and insert j equally spaced small arcs such that the harmonic measure of the ”outer part of the gate” is at least $1/2 \times 2^{-2n}$, producing a j-gate.
A domain with computable boundary and noncomputable harmonic measure.

Let $B \subset \mathbb{N}$ be a lower-computable, non-computable set. We modify the unit circle by inserting the following "gates" at $\exp 2\pi i \left(2^{-n}\right)$:

Specifically, if $n \in B$ is enumerated at stage j we take the interval $[\exp 2\pi i \left(2^{-n} - 2^{-2n}\right), \exp 2\pi i \left(2^{-n} + 2^{-2n}\right)]$ and insert j equally spaced small arcs such that the harmonic measure of the "outer part of the gate" is at least $1/2 \times 2^{-2n}$, producing a j-gate.

Otherwise, if $n \notin B$, we almost cover the gate with one interval so that the harmonic measure on the "outer part of the gate" is at most 2^{-100n}, making an ∞-gate.
A domain with computable boundary and noncomputable harmonic measure.

The resulting domain Ω is regular.
A domain with computable boundary and noncomputable harmonic measure.

The resulting domain Ω is regular.

To compute its boundary with precision $1/j$, run an algorithm enumerating B for j steps. Insert j-gate for all n which are not yet enumerated.
A domain with computable boundary and noncomputable harmonic measure.

The resulting domain Ω is regular.

To compute its boundary with precision $1/j$, run an algorithm enumerating B for j steps. Insert j-gate for all n which are not yet enumerated.

But if the harmonic measure of Ω would be computable, we would just have to compute it with precision 2^{-10n} to decide if $n \in B$. This contradicts non-computability of B!
A domain with computable Carathéodory extension and no computable modulus of local connectivity: construction

Let again $B \subset \mathbb{N}$ be a lower-computable, non-computable set. Set $x_i = 1 - 1/2i$.
A domain with computable Carathéodory extension and no computable modulus of local connectivity: construction

Let again $B \subset \mathbb{N}$ be a lower-computable, non-computable set. Set $x_i = 1 - 1/2i$.

The domain Ω is constructed by modifying the square $(0, 1) \times (0, 1)$ as follows.
A domain with computable Carathéodory extension and no computable modulus of local connectivity: construction

Let again $B \subseteq \mathbb{N}$ be a lower-computable, non-computable set. Set $x_i = 1 - 1/2i$.

The domain Ω is constructed by modifying the square $(0,1) \times (0,1)$ as follows.

If $i \notin B$, then we add a straight line (i-line) to I going from $(x_i, 1)$ to (x_i, x_i).
A domain with computable Carathéodory extension and no computable modulus of local connectivity: construction

Let again $B \subset \mathbb{N}$ be a lower-computable, non-computable set. Set $x_i = 1 - 1/2^i$.

The domain Ω is constructed by modifying the square $(0, 1) \times (0, 1)$ as follows.

If $i \not\in B$, then we add a straight line (i-line) to I going from $(x_i, 1)$ to (x_i, x_i).

If $i \in B$ and it is enumerated in stage s, we remove i-fjord, i.e. the rectangle

$$[(x_i - s_i, x_i + s_i) \times [x_i, 1]$$

where $s_i = \min\{2^{-s}, 1/(3i^2)\}$.
The example: $\partial \Omega$ and Carathéodory modulus are computable.

Computing a 2^{-s} Hausdorff approximation of $\partial \Omega$. Run an algorithm enumerating B for $s + 1$ steps. For all those i’s that have been enumerated so far, draw the corresponding i-fjords. For all the other i’s, draw a i-line.
The example: $\partial \Omega$ and Carathéodory modulus are computable.

Computing a 2^{-s} Hausdorff approximation of $\partial \Omega$. Run an algorithm enumerating B for $s + 1$ steps. For all those i’s that have been enumerated so far, draw the corresponding i-fjords. For all the other i’s, draw a i-line.

Carathéodory modulus: $2\sqrt{r}$.
The example: Modulus of local connectivity \(m(r) \) is not computable

Compute \(B \) using \(m(r) \).
The example: Modulus of local connectivity \(m(r) \) is not computable

Compute \(B \) using \(m(r) \). First, for \(i \in \mathbb{N} \), compute \(r_i \in \mathbb{Q} \) such that

\[
m(2 \cdot 2^{-r_i}) < \frac{x_i}{2}.
\]
The example: Modulus of local connectivity $m(r)$ is not computable

Compute B using $m(r)$. First, for $i \in \mathbb{N}$, compute $r_i \in \mathbb{Q}$ such that

$$m(2 \cdot 2^{-r_i}) < \frac{x_i}{2}.$$

If $i \in B$ then i is enumerated in fewer than r_i steps. Our algorithm to compute B will emulate the algorithm for enumerating B for r_i steps.