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Dispersive long waves models

Consider the KDV type equations,

∂tu + ∂x (Mu + f (u)) = 0, (1)

whereM is a Fourier multiplier operator satisfying M̂u(ξ) = α(ξ)û(ξ).
Assume f (s) ∈ C 1(R,R) and
(A1)M is a self-adjoint operator, and the symbol α : R 7→ R+ is even
and regular near 0.
(A2) There exist constants m, c1, c2 > 0, such that

(Differential case) c1 |ξ|m ≤ α (ξ) ≤ c2 |ξ|m , for large ξ, (2)

or
(Smoothing case) c1 |ξ|−m ≤ α (ξ) ≤ c2 |ξ|−m , for large ξ. (3)

For the classical KDV equation,M = −∂2x . For Benjamin-Ono, Whitham

and intermediate long-wave equations, α(ξ) = |ξ| ,
√

tanh ξ
ξ and

ξ coth (ξH)−H−1 respectively.
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Periodic Traveling waves

A periodic traveling wave (TW) solution is of the form
u (x , t) = uc (x − ct), where c ∈ R is the traveling speed and uc satisfies
the equation

Muc − cuc + f (uc ) = a,
for a constant a. In general, the periodic TWs are a three-parameter
family of solutions depending on period T , travel speed c and the
constant a. The stability of periodic TWs to perturbations of the same
period had been studied a lot in the literature. Take minimal period
T = 2π. We assume that uc (x − ct) is orbitally stable in the energy norm
infy∈T ‖u − uc (x + y)‖H m

2 (T2π)
for the differential case

‖M(·)‖L2 ∼ ‖ · ‖Hm , and infy∈T ‖u − uc (x + y)‖L2(T2π) for the
smoothing case ‖M(·)‖Hm ∼ ‖ · ‖L2 .
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Modulational instability

The modulational instability (also called Benjamin-Feir, side-band
instability) is to consider perturbations of different period and even
localized perturbations. Consider the linearized equation ∂tu = JLu, where
J = ∂x and L :=M− c + f ′ (uc ). By the standard Floquet-Bloch theory,
any bounded eigenfunction φ(x) of the linearized operator JL takes the
form φ(x) = e ikxvk (x), where k ∈ [0, 1] is a parameter and vk ∈ L2(T2π).
Then JLe ikxvk (x) = λ(k)e ikxvk (x) is equivalent to JkLkvk = λ (k) vk ,
where

Jk = ∂x + ik, Lk =Mk−c + f ′(uc ).
Here,Mk is the Fourier multiplier operator with the symbol m(ξ + k).
We say that uc is linearly modulationally unstable if there exists k ∈ (0, 1)
such that the operator JkLk has an unstable eigenvalue λ(k) with
Re λ(k) > 0 in the space L2(T2π).
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Linear Modulational instability

First, it can be shown that (Lin & Zeng, 2016):
If uc is orbitally stable under perturbations of the same period, then for
any δ > 0, there exists ε0 > 0 such that |k | < ε0 implies
σ (JkLk ) ∩ {|z | ≥ δ} ⊂ iR.
Thus when k is small enough, the unstable eigenvalues of JkLk can only
bifurcate from the zero eigenvalue of JL. Since dim ker (JL) = 3, the
perturbation of zero eigenvalue of JL for JkLk (0 < k � 1) can be
reduced to the eigenvalue perturbation of a 3 by 3 matrix. This had been
studied extensively in the literature and instability conditions were
obtained for various dispersive models, by Bronski, Johnson, Hur,
Kapitula, Hărăguş, Deconinck, ...
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Nonlinear instability-smooth case

Theorem 1 (L, Shasha Liao, Jiayin Jin, arxiv: 1704.08618) Assume
f ∈ C∞ (R) , M satisfies (A1)-(A2) and uc is linearly modulationally
unstable. WhenM is smoothing, assume in addition that

c − ‖f ′(uc )‖L∞(T2π) > δ0 > 0.

Then uc is nonlinearly unstable in the following sense:
i) (Multiple periodic perturbations) ∃ q ∈N, θ0 > 0, such that for any
s ∈N and arbitrary δ > 0, there exists a solution uδ(t, x) to the nonlinear
equation satisfying ‖uδ(0, x)− uc (x)‖H s (T2πq ) <

δ and infy∈qT ‖uδ(T δ, x)− uc (x + y)‖L2(T2πq ) > θ0, where T δ ∼ |ln δ|.
ii) (Localized perturbations) ∃ θ0 > 0, such that for any s ∈N and
arbitrary small δ > 0, there exists T δ ∼ | ln δ| and a solution uδ(t, x) to
the nonlinear equation in the traveling frame

∂tU − c∂xU + ∂x (MU + f (U)) = 0,

satisfying ‖uδ(0, x)− uc (x)‖H s (R) < δ and ‖uδ(T δ, x)− uc (x)‖L2(R) > θ0.
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Remark

1. WhenM is smoothing (e.g. Whitham equation), the additional
assumption

c − ‖f ′(uc )‖L∞(T2π) > δ0 > 0,

is used to show the regularity of TWs and the unstable eigenfunctions. For
Whitham equation with f = u2, this assumption is verified for small
amplitude waves and numerically confirmed for large amplitude waves.
2. The nonlinear instability for multi-periodic perturbations is proved in
the orbital distance since the equation is translation invariant. For
localized perturbations, we study the equation in the space uc +Hs (R)
which is not translation invariant. Therefore, we do no use the orbital
distance for nonlinear instability under localized perturbations.
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Nonlinear instability (nonsmooth case)

Theorem 2 (L, Shasha Liao, Jiayin Jin) AssumeM is differential with
m ≥ 1, that is,

c1 |ξ|m ≤ α (ξ) ≤ c2 |ξ|m , m ≥ 1, c1, c2 > 0, for large ξ, (4)

and

f ∈ C 2n+2 (R) , where n > 1
2
max{1+m, 1} is an integer, (5)

Suppose uc is linearly modulationally unstable. Then uc is nonlinearly
unstable for both multi-periodic and localized perturbations in the sense of
Theorem 1, with the initial perturbation arbitrarily small in H2n (T2πq) or
H2n (R).
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Remark

In Theorem 2, the assumption f ∈ C 2n+2 (R) is only used to prove that
the nonlinear equation is locally well-posed in H2n (T2πq) and
uc +H2n (R) by Kato’s approach of nonlinear semigroup. Assuming the
local well-posedness in the energy space H

m
2 , we only need much weaker

assumptions on f to prove nonlinear instability:
f ∈ C 1 (R) and there exist p1 > 1, p2 > 2, such that∣∣f (u + v)− f (v)− f ′ (v) u∣∣ ≤ C (|u|∞ , |v |∞) |u|p1 , (6)∣∣∣∣F (u + v)− F (v)− f (v) u − 12 f ′ (v) u2

∣∣∣∣ ≤ C (|u|∞ , |v |∞) |u|p2 , (7)

where F (u) =
∫ u
0 f (s) ds. When f ∈ C 2 (R), the conditions (6)-(7) are

automatically satisfied with (p1, p2) = (2, 3).
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Ideas of the proof

The proof consists of two steps. First, we use the Hamiltonian structure of
the linearized equation to get the semigroup estimates for both periodic
and localized perturbations. This is obtained by using the general theory in
a recent paper of Lin and C. Zeng.
Second, there is a diffi culty of the loss of derivative in the nonlinear term
for KDV type equations. For smooth f , this loss of derivative was
overcome by using the approach of Grenier by constructing higher order
approximation solutions. For non-smooth f and differentialM, it can be
overcome by a bootstrap argument.
The nonlinear instability for semilinear equations (BBM, Schrödinger,
Klein-Gordon etc.) is much easier. For multi-periodic perturbations, one
can even construct invariant (stable, unstable and center) manifolds which
characterize the complete local dynamics near unstable TWs.
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Linear Hamiltonian system

First we consider the following abstract framework of linear Hamiltonian
system

∂tu = JLu, u ∈ X ,
where X is a Hilbert space.
(H1) J : X ∗ → X is a skew-adjoint operator.
(H2) L : X → X ∗ generates a bounded bilinear symmetric form 〈L·, ·〉 on
X . There exists a decomposition X = X− ⊕ ker L⊕ X+ satisfying that
〈L·, ·〉 |X− < 0, dimX− = n− (L) < ∞, and

〈Lu, u〉 ≥ δ1 ‖u‖2X , for some δ1 > 0 and any u ∈ X+.
(H3) The above X± satisfy

ker i∗X+⊕X− = {f ∈ X
∗ | 〈f , u〉 = 0, ∀u ∈ X− ⊕ X+} ⊂ D(J),

where i∗X+⊕X− : X ∗ → (X+ ⊕ X−)∗ is the dual operator of the embedding
iX+⊕X− .
The assumption (H3) is automatically satisfied when dim ker L < ∞, as in
the current case.
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Exponential trichotomy of semigroup

Theorem (L & Zeng, arxiv 1703.04016) Under assumptions (H1)-(H3),
we have

X = E u ⊕ E c ⊕ E s ,
satisfying: i) E u ,E s and E c are invariant under etJL. ii)
∃ M > 0, λu > 0, such that∣∣∣etJL|E s ∣∣∣

X
≤ Me−λu t , ∀ t ≥ 0,

|etJLc |E u |X ≤ Meλu t , ∀ t ≤ 0.

and
|etJLc |E c |X ≤ M(1+ |t|k0), ∀ t ∈ R.

where k0 ≤ 2n− (L).
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Exponential trichotomy (continue)

For k ≥ 1, define the space X k ⊂ X to be

X k = {u ∈ X | (JL)n u ∈ X , n = 1, · · · , k.}

and
‖u‖X k = ‖u‖X + ‖JLu‖X + · · ·+

∥∥∥(JL)k u∥∥∥
X
.

Assume E u,s ⊂ X k , then the exponential trichotomy holds true for X k
with

X k = E u ⊕ E ck ⊕ E s , E ck = E c ∩ X k
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Semigroup estimates (multiple periodic)

First, from the definition of linear MI, the unstable frequencies are in open
intervals I ⊂ (0, 1). Pick a rational number k0 = p

q ∈ I with p, q ∈N.

Then e ik0xvk0 (x) is of period 2πq and JL has an unstable eigenvalue in
L2(T2πq). It leads us to consider the nonlinear instability of uc in
L2(T2πq). By the above general theorem on linear Hamiltonian PDEs, we
have

Lemma

Consider the semigroup etJL associated with the linearized equation near
TW uc (x − ct) in the traveling frame (x − ct, t), then the exponential
trichotomy holds true in the spaces Hs (T2πq)

(
s ≥ m

2 , q ∈N
)
whenM

is differential and in Hs (T2πq) (s ≥ 0, q ∈N) whenM is smoothing.
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Continue

As an immediate corollary of the above lemma, we get the following upper
bound on the growth of the semigroup etJL which is used in the proof of
nonlinear instability.

Corollary
Let λ0 be the growth rate of the most unstable eigenvalue of JL in
L2 (T2πq). Then for any ε > 0, there exists constant Cε such that∥∥∥etJL∥∥∥

H s (T2πq )
≤ Cεe(λ0+ε)t , for any t > 0,

where q ∈N , s ≥ m
2 whenM is differential and s ≥ 0 whenM is

smoothing.
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Semigroup estimates for localized perturbations

For localized perturbation in Hs (R), we cannot use the general theorem
directly since L has bands of negative continuous spectra. But notice that:
If u ∈ Hs (R), by using Fourier transform, we can write
u (x) =

∫ 1
0 e

iξxuξ (x) dξ, where uξ ∈ Hsx (T) and
‖u(x)‖2H s (R) ≈

∫ 1
0 ‖uξ (x) ‖2H s (T2π)

dξ. Since

etJLu(x) =
∫ 1
0 e

iξxetJξLξuξ (x) dξ, we have∥∥etJLu∥∥2H s (R) ≈ ∫ 10 ∥∥etJξLξuξ

∥∥2
H sx (T)

dξ and and the estimate of etJL in

Hs (R) is reduced to prove the semigroup estimate of etJξLξ in Hsx (T)
uniformly for ξ ∈ (0, 1).

Lemma
Let λ0 be the maximal growth rate of JξLξ , ξ ∈ (0, 1). For every s ≥ m

2
and any ε > 0, there exists C (s, ε) > 0 such that

‖eJLtU0(x)‖H s (R) 6 C (s, ε)e(λ0+ε)t‖U0(x)‖H s (R).
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Nonlinear instability-smooth case

We use the idea of Grenier (CPAM, 2000) in the proof of nonlinear
instability of shear flows to construct higher order approximation solutions
and overcome the loss of derivative by using energy estimates.

Lemma (Energy estimates)

Consider the solution of the following equation

∂tv − c∂xv + ∂xMv + ∂x (f (uc + U + v)− f (uc + U)) = R,

with v(0, ·) = 0, and U (t, ·) ∈ H4(T) ,R (t, ·) ∈ H2(T) are
given. Assume that

sup
0≤t≤T

‖U‖ (t)H 4(T) + ‖v‖H 2(T) (t) ≤ β,

then there exists a constant C (β) such that for 0 ≤ t ≤ T ,

∂t ‖v‖H 2 ≤ C (β) ‖v‖H 2 + ‖R‖H 2 .
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Higher order approximate solution

Choose integer N such that (N + 1) λ0 > C (1). We construct an
approximate solution Uapp to the nonlinear problem of the form

Uapp(t, x) = uc (x) +
N

∑
j=1

δjUj (t, x),

where
U1(t, x) = vg (x)eλt + v̄g (x)e λ̄t ,

is the most rapidly growing real-valued 2πq-periodic solution of the
linearized equation. The construction is by induction and such that

‖Uj (t, x)‖H l+1−j (T) 6 C (N)e jλ0t , for j = 1, 2, · · · ,N,

where l = 4+N.
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Error estimate

The construction of Uapp is to ensure that the error term

Rapp = ∂tUapp − c∂xUapp + ∂x (MUapp + f (Uapp)),

satisfies

‖Rapp‖H 2 ≤ C (N) δN+1e(N+1)λ0t , for 0 ≤ t ≤ T δ,

where δeλ0T δ
= θ for some θ < 1 small. Let Uδ(t, x) be the solution to

the nonlinear equation with initial value uc (x) + δU1(0, x), and let
v = Uδ − Uapp .
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continue

The error term v satisfies{
∂tv − c∂xv + ∂xMv + ∂x (f (Uapp + v)− f (Uapp)) = −Rapp
v(0, ·) = 0.

By using the lemma on energy estimates, when θ is small we can show that

∂t ‖v‖H 2 ≤ C (1) ‖v‖H 2 + ‖Rapp‖H 2 , for 0 ≤ t ≤ T
δ.

Thus by Gronwall, ‖v‖H 2 (t) ≤ C (N) δN+1e(N+1)λ0t .
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Continue

The nonlinear instability follows since at the time Tδ with δeλ0T δ
= θ,

∥∥∥Uδ(T
δ, x)− uc

∥∥∥
L2(T)

>
∥∥∥Uapp(T δ, x)− uc (x)

∥∥∥
L2(T)

− ‖v(T δ, x)‖H 2(T)

> C1δeλ0T δ − C2
(

δeλ0T δ
)2

= C1θ − C2θ2 ≥
1
2
C1θ,

when θ is chosen to be small. The orbital instability can be shown with
some extra estimates.
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Localized case

There is no genuine unstable eigenfunction of JL in L2(R). Choose
u1 (0) =

∫
I e
iξxvξ (x) dξ, where I is a small interval centered at the most

unstable frequency ξ0 with maximal growth rate λ0 and vξ (x) is the most
unstable eigenfunction of JξLξ (ξ ∈ I ) with unstable eigenvalue λ (ξ).
Then

U1(t, x) = etJLu1 (0) =
∫
I
vξ (x) e

λ(ξ)te iξx dξ.

By using stationary phase type arguments, it can be shown that

‖U1(t, x)‖L2(R) ≈
Ceλ0t

(1+ t)
1
2l
,

where l is a positive integer and λ0 is the maximal growth rate. By using
the semigroup estimates in Hs (R), the rest of the proof is similar to the
periodic case.
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Non-smooth case

In Theorem 1, the assumption f (u) ∈ C∞ is required in order to construct
approximation solutions to suffi ciently high order to close the energy
estimates. When f (u) is only C 1 and ‖M(·)‖L2 ∼ ‖ · ‖Hm (m ≥ 1), the
nonlinear instability can be proved by bootstrap arguments. This is done
in three steps. First, by using the energy conservation

H (u) =
1
2
〈Lu, u〉−

∫
R

(
F (u + uc )− F (uc )− f (uc ) u −

1
2
f ′ (uc ) u2

)
dx ,

we can show

‖u (t)‖L2 ∼
δeλ0s

(1+ s)
1
l
=⇒ ‖u (t)‖Hm/2 ∼

δeλ0s

(1+ s)
1
l
.

Second, we bootstrap ‖u (t)‖H−1 from ‖u (t)‖Hm/2 . The nonlinear
solution uδ (t) for the unstable perturbation can be written as

uδ (t) = e
tJLuδ (0)−

∫ t

0
e(t−s)JL∂x

(
f (uδ (s) + uc )− f (uc )− f ′ (uc ) uδ (s)

)
ds

= ul (t) + un (t) .
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Continue

We have the semigroup estimate in H−1(R): for any ε > 0 there exist
C (ε) > 0 such that

‖etJLu(x)‖H−1(R) 6 C (ε)e(λ0+ε)t‖u(x)‖H−1(R), ∀t > 0.
Thus

‖un (t)‖H−1 .
∫ t

0

∥∥∥e(t−s)JL∥∥∥
H−1

∥∥f (uδ (s) + uc )− f (uc )− f ′ (uc ) uδ (s)
∥∥
L2 ds

.
∫ t

0
e(λ0+ε)(t−s) ‖uδ (s)‖p1

H
m
2
ds, (p1 > 1)

.
∫ t

0
e(λ0+ε)(t−s)

(
δeλ0s

(1+ s)
1
l

)p1
ds

.
(

δeλ0t

(1+ t)
1
l

)p1
,

by choosing ε < (p1 − 1) λ0.
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Interpolation

By interpolation of L2 by H−1 and H
m
2 ,

‖un (t)‖L2 ≤ ‖un (t)‖
α1
H−1 ‖un (t)‖

1−α1

H
m
2

(
α1 =

m
m+ 2

)

.
(

δeλ0t

(1+ t)
1
l

)αp1+1−α1

,

where p3 = αp1 + 1− α1 > 1. At t = Tδ with δeλ0Tδ

(1+Tδ)
1
l
= θ,

‖uδ (Tδ)‖L2 ≥ ‖ul (Tδ)‖L2 − ‖un (Tδ)‖L2

≥ C0
δeλ0Tδ

(1+ Tδ)
1
l
− C ′

(
δeλ0Tδ

(1+ Tδ)
1
l

)p3
= C0θ − C ′θp3 ≥

1
2
C0θ,

when θ is small.
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Remark

1. In the above proof, the semigroup estimates of etJL in H−1 is used to
overcome the loss of derivative of the nonlinear term ∂x f (u), since

‖∂x f (u)‖H−1 ≈ ‖f (u)‖L2 ,
which is controllable in H

m
2 . To estimate etJL|H−1 , by duality it suffi ces to

estimate etLJ |H 1 , which is reduced to estimate etLξJξ |H 1(T2π) uniformly for
ξ ∈ [0, 1]. The estimate of etLξJξ |H 1(T2π) is obtained by a decomposition
of the spectral projections of Lξ near 0 and away from 0, and then
conjugate etLξJξ to etJξLξ by L−1ξ on the part away from 0.
2. The idea of overcoming the loss of derivative by bootstrapping the
growth of higher order norms from a lower order one was originated in the
work of (Guo, Strauss 95) for the Vlasov-Poisson system. This approach
was later extended to other problems including 2D Euler equation (Bardos,
Guo, Strauss 02) (Lin, 04) and Vlasov-Maxwell systems (Lin, Strauss 07).
Here, our approach of bootstrapping the lower order norm

(
H−1

)
from a

higher order norm
(
H

m
2
)
and then closing by interpolation seems to be

new.
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Examples-Fractional KDV

Consider the Fractional KDV equation

∂tu + ∂x (Λmu − up) = 0,

where Λ =
√
−∂2x , m >

1
2 and either p ∈N or p = q

n with q and n being
even and odd natural numbers, respectively. It is proved by (Johnson,
2013) that TWs of small amplitude are linearly MI if m ∈ ( 12 , 1) or if
m > 1 and p > p∗(m), where

p∗(m) :=
2m(3+m)− 4− 2m
2+ 2m(m− 1) .
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Examples-Whitham equation

Whitham equation

∂tu +M∂xu + ∂x (u2) = 0,

where

M̂f (ξ) =

√
tanh ξ

ξ
f̂ (ξ).

It is clear that ‖M(·)‖H 1/2 ∼ ‖ · ‖L2 . When f (u) = u2, for small
amplitude TWs, the condition

c − 2 ‖uc‖L∞(T2π)
> ε > 0,

is satisfied and it is also true for large amplitude waves by numerics. It was
shown by Hur & Johnson (2015) that the small TWs of small period are
linearly modulationally unstable.
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Summary

1. For other dispersive models with energy-momentum functional bounded
from below (n− (L) < ∞), we could use the similar approach to prove that
linear MI implies nonlinear MI for both periodic and localized
perturbations.
2. The remaining problem is to prove nonlinear MI when the
energy-momentum functional is indefinite. An important example is 2D
water waves for which the linear MI for small amplitude Stokes waves was
first found by (Benjamin & Feir 1967) and later proved by (Bridges and
Mielke, 1995) for the finite depth case.
3. For multi-periodic perturbations, it is possible to construct invariant
manifolds (stable, unstable and center) which give the complete dynamics
near the orbit of unstable waves. For localized perturbations, it is not clear
how to describe the local dynamics for general initial data. The long time
dynamics for unstable perturbations is more challenging.
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