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m U: a set with a natural probability measure u
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m Let Z={z,...,2y} C U be an N-point set.
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Discrepancy

m U: a set with a natural probability measure u
(e.g., [0,1]%, T, S, etc.)

m A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

m Let Z={z,...,2y} C U be an N-point set.

m Discrepancy of Z with respect to A:

DA(Z) = sup | FEOA)

Sup N p(A)|.
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Discrepancy

m U: a set with a natural probability measure u
(e.g., [0,1]%, T, S, etc.)

m A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

m Let Z={z,...,2y} C U be an N-point set.

m Discrepancy of Z with respect to A:

ZNA
Da(2) = sup |[FEDA )|
AcA
m Optimal discrepancy wrt A:

Dn(A) = inf Da(Z).
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Discrepancy

m U: a set with a natural probability measure u
(e.g., [0,1]%, T, S, etc.)

m A - a collection of subsets of U (“test sets”, e.g., balls,
cubes, convex sets, spherical caps)

m Let Z={z,...,2y} C U be an N-point set.
m Discrepancy of Z with respect to A:
#(ZNA
Da(Z) = sup (N) — pu(A)].
AcA

Optimal discrepancy wrt A:

Dn(A) = inf Da(Z).

m sup — L2-average: L? discrepancy.
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Disk (ball) disrepancy on T¢

Theorem (Montgomery; Beck; 80’s)

For any N-point set Z = {z1,...,zy} C T? ~ [0,1)? there exists
a disk D C T? of radius 1/4 or 1/2 such that

#{1§i§N:ZiED}
N

—|D|| 2 N74.
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Disk (ball) disrepancy on T¢

Theorem (Montgomery; Beck; 80’s)

For any N-point set Z = {z1,...,zy} C T? ~ [0,1)? there exists
a disk D C T? of radius 1/4 or 1/2 such that

#{1§i§N:ZiED}
N

—|D|| 2 N74.

1

m Higher-dimensional version for Z C T¢ holds with N ~372a,
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For any N-point set Z = {z1,...,zy} C T? ~ [0,1)? there exists
a disk D C T? of radius 1/4 or 1/2 such that

#{1§i§N:ZiED}
N

—|D|| 2 N74.

1

m Higher-dimensional version for Z C T¢ holds with N ~372a,

m s one radius enough? Still an open question!
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Disk (ball) disrepancy on T¢

Theorem (Montgomery; Beck; 80’s)

For any N-point set Z = {z1,...,zy} C T? ~ [0,1)? there exists
a disk D C T? of radius 1/4 or 1/2 such that

#{1§i§N:ZiED}
N

—|D|| 2 N74.

1

m Higher-dimensional version for Z C T¢ holds with N ~3 2.
m s one radius enough? Still an open question!

m Sharp up to logarithms: jittered sampling.
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Disk (ball) disrepancy on T¢

Theorem (Montgomery; Beck; 80’s)
For any N-point set Z = {z1,...,zy} C T? ~ [0,1)? there exists
a disk D C T? of radius 1/4 or 1/2 such that

#{1§i§N:ZiED}
N

—|D||Z N5,

m Higher-dimensional version for Z C T¢ holds with N ~3 2.
m s one radius enough? Still an open question!
m Sharp up to logarithms: jittered sampling.

m Sharp in L? sense: lattice.
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L? discrepancy: lattice vs jittered sampling

Denote )
Z N B,
Diz(z):/’#{ N5l ) da
N
Td
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L? discrepancy: lattice vs jittered sampling

Denote )
7N B
R e
N
Td
T T
Let LM:{(MIMd) : ri:0,1,...,M—1} I\
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L? discrepancy: lattice vs jittered sampling

Denote )
ZNB
D%Q(Z):/’#{T(‘Q:)}—BA dx
N
Td
Let L —{(T—l T—d)'r~—01 M—l}CTd and set
M — M,...,M . 1 — gLy ooy

Duagtice (M) = Dy (LM ) and  Djittered(M) = E D2 (ij\i}tered).
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L? discrepancy: lattice vs jittered sampling

Denote )
Z N B,
D%Q(Z):/'M—BA dx
N
'ﬂ‘d
Let L :{(r—l T—d)'r~:01 M—l}CTd and set
M M,...,M . '3 gLy ooy

Duagtice (M) = Dy (LM ) and  Djittered(M) = E D2 (iji}tered).

Theorem (Chen, Travaglini, '08)

m Ford=1 or2, Diattice(M) < Dijittered (M).
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L? discrepancy: lattice vs jittered sampling

Denote )
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Duagtice (M) = Dy (LM ) and  Djittered(M) = E D2 (iji}tered).

Theorem (Chen, Travaglini, '08)

m Ford=1 or2, Diattice(M) < Dijittered (M).
m For large d7 Dlattice(M> > Djittered(M)-
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L? discrepancy: lattice vs jittered sampling

Denote )
Z N B,
D%Q(Z):/'M—BA dx
N
'ﬂ‘d
Let L :{(r—l T—d)'r~:01 M—l}CTd and set
M M,...,M . '3 gLy ooy

Duagtice (M) = Dy (LM ) and  Djittered(M) = E D2 (iji}tered).

Theorem (Chen, Travaglini, '08)

m Ford=1 or2, Diattice(M) < Dijittered (M).
m For large d7 Dlattice(M> > Djittered(M)-

unless d=1 mod 4 and d > 1.
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Montgomery’s lower bound

m Let Z=1{z,...,2n} C T2
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Montgomery’s lower bound

m Let Z=1{z,...,2n} C T2
m Then
#1{Z N By(2)}

N —|B;| = (1B, * Dz) (v),
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Montgomery’s lower bound

m Let Z=1{z,...,2n} C T2

m Then 70 B
#{NT(:E)} —|Br| = (1B, * Dz) (z),

N
1
m where Dy = N Zl d;;, — A2 (discrepancy measure).
1=
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Montgomery’s lower bound

m Let Z=1{z,...,2n} C T2

m Then 4(70 B, (x))
N T
PAELEED B = (15, «D2) (o),
1 .

m where Dy = N Z d;;, — A2 (discrepancy measure).
[

=" [i5,m)} - [Dz(n)?

neZz?
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Montgomery’s lower bound

Let Z={z,...,2y} C T?

Then
#{Z N B,(x)}

N —|B;| = (1B, * Dz) (v),

1
where Dy = N Z d;;, — A2 (discrepancy measure).

= > [1p, ) [Dz(m)

neZz?

1p (n) = ﬁJ1(27r]n|r) - Bessel function of the first kind
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Montgomery’s lower bound

Let Z={z,...,2y} C T?

Then
#{Z N B,(x)}

N —|B;| = (1B, * Dz) (v),

1
where Dy = N Z d;;, — A2 (discrepancy measure).
=" [i5,m)} - [Dz(n)?
neZz?
1p (n) = ﬁJ1(27r]n|r) - Bessel function of the first kind

Ji(t) = \/%cos(t —31/4) + O(t3/?)
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Bessel functions

06
04k
0.2l o
1 1 1 1 1 1
5 10 15 20 25 a0
0.2}

J1(t)
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Bessel functions

o6l
o4

0.2
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Bessel functions

06
05F
0.4 -

0.3k

01

t-J3(t) and t - JZ(2t)
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Bessel functions

o8F |
06
04+

021

10 15 20 25 30

t- (JE(t) + J7(21))
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Bessel functions

015}

oosk | A -

10 15 20 25 30

Thus |1Bl/4(n)\2 + \131/2(n)]2 > L
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Exponential sums

N
1
m Dy = N Zézi — )2 (discrepancy measure) .

=1
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Exponential sums

N
1
=N Z — A2 (discrepancy measure).

N
1 )
m For n # 0, DZ =~ E e 2mimzi
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Exponential sums

N
1
=N Z — A2 (discrepancy measure).

N

m Montgomery’s esimate:

N 2
§ : § :6727m'n-z,-

[n]j<X"i=1

N
1 )
m For n # 0, DZ — E e 2mimzi

> X2N

~
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Exponential sums

N
1
=N Z — A2 (discrepancy measure).

m For n # 0, DZ

Z\H

N
Z —2min-z;

m Montgomery’s esimate:

>

[nfl<x

i=1

and taking X ~ N'/2 leads to the discrepancy bound.
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Exponential sums

N
1
=N Z — A2 (discrepancy measure).

m For n # 0, DZ

2%*

N
Z —2min-z;

m Montgomery’s esimate:

>

[nfl<x

i=1
and taking X ~ N'/2 leads to the discrepancy bound.
m Refinement (Steinerberger, '17):

2 N
[yl x5 X
4 vt
Infl<xi=1 =R RS i
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Refined discrepancy estimate

For any N-point set Z = {21,..., 2y} C T? there exists a disk
D C T? of radius 1/4 or 1/2 such that
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Refined discrepancy estimate

For any N-point set Z = {z1,...,2x} C T? there exists a disk
D C T? of radius 1/4 or 1/2 such that

m Montgomery, ’89:

#{Zi S D}

3
—|D|| 2 N1
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Refined discrepancy estimate

For any N-point set Z = {z1,...,2x} C T? there exists a disk
D C T? of radius 1/4 or 1/2 such that

m Montgomery, ’89:

, €D
‘#{ZZNG - |D\' > N,
m Steinerberger, ’17:
1
#{z € D} 7 N N ’
mwm =) pll > N1 '
‘ N | |'N : Z 1+ N2z — 20|

3,j=1
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Spherical cap discrepancy

For z € S%, t € [~1,1] define spherical caps:

Cx,t) ={y € S*: (x,y) >t}.
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Spherical cap discrepancy

For 2 € §%, t € [~1,1] define spherical caps:

Cx,t) ={y € S*: (x,y) >t}.

For a finite set Z = {21, 22, ..., 25} C S? define

Dep(Z)=  sup  |TEOCE1Y)

—o(C(x,1))].
z€Sete[—1,1] N ( ( ))
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Spherical cap discrepancy

For 2 € §%, t € [~1,1] define spherical caps:

Cx,t) ={y € S*: (x,y) >t}.

For a finite set Z = {21, 22, ..., 25} C S? define

Dep(Z) = sup #(ZNC(, 1)

—o(C(x,1))].
zeS te[—1,1] N ( ( ))

Theorem (Beck, '84)

There exist constants cg, Cgq > 0 such that

cgN~37 3 < o Deay(Z) < CyN~272a,/log N.
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Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)
For any Z = {z1,...,2n} C S¢
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Spherical cap discrepancy: refinement of lower bound

Theorem (Beck, '84)

For any Z = {z1,...,2n} C S¢

1/2
1 1§5kg@+wﬂwa—%m

(1 + Nz — )+

i,j=1
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Discrepancy and energy: Stolarsky Principle

Define the spherical cap L? discrepancy

2

ZmC #(Z2nC(x,1) — o (C(x,1))| dtdo(x).

cap L2

Sd
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Discrepancy and energy: Stolarsky Principle

Define the spherical cap L? discrepancy

capL2 /Sd/

ZﬁCxt))

2
—o(C(z,1))| dtdo(z).

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
1 & )
N2 Z lzi—zjll + ca [DLz,cap] = const

i,j=1
J _ /S d /S e =yl do(@)do(y).
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Discrepancy and energy: Stolarsky Principle

Define the spherical cap L? discrepancy

2

Zm0$t)) —o(C(z,1))| dtdo(z).

cap L2

Sd

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
2
Cd |:Dcap 72 (Z)] =

= [, [l = sl dota)dots) - Zuzz-—zj-u.

,5=1
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Discrepancy and energy: Stolarsky Principle

Define the spherical cap L? discrepancy

2

Zm0$t)) —o(C(z,1))| dtdo(z).

cap L2

Sd

Theorem (Stolarsky invariance principle)

For any finite set Z = {21, ...,zn} C S¢
2
Cd |:Dcap 72 (Z)] =

= [, [l = sl dota)dots) - Zuzz-—zj-u.

,5=1

m Stolarsky ’73, Brauchart, Dick '12, DB, Dai, Matzke ’17
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Spherical caps: L? Stolarsky Principle

m Define the spherical cap discrepancy of fixed height ¢:

Den@)] = [ | Sttt ~ o(C(at)| dote)
=1
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Spherical caps: L? Stolarsky Principle

m Define the spherical cap discrepancy of fixed height ¢:

[D‘Lt;cap(z)}? — / Hf S 1ogn(z) — o(Cla,1)) | do(x)
S =
] (1) 2 1 2
[DLgmp(Z)} =33 Z O'(C(Zi,t) N C’(zj,t)) - (U(C(p,t))) .
7,7=1
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Spherical caps: L? Stolarsky Principle

m Define the spherical cap discrepancy of fixed height ¢:

Den@)] = [ | Sttt ~ o(C(at)| dote)

DY 2] = 1 Z O(zi,t) N C(z,1)) = (o(Cp.1))
m Averaging over t € [—1, 1]

1
/ o(Cle ) NCy, b)) dt = 1-Callz—y]

-1
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Spherical caps: L? Stolarsky Principle

m Define the spherical cap discrepancy of fixed height ¢:

Den@)] = [ | Sttt ~ o(C(at)| dote)
=1

DY 2] = 1 Z O(zi,t) N C(z,1)) = (o(Cp.1))
m Averaging over t € [—1, 1]

1
/ o(Cle ) NCy, b)) dt = 1-Callz—y]

-1
m Taking ¢ = 0 (i.e. hemispheres)

o(C(z,0)NC(y,0)) = %(1 —d(z,y)),

where d(z,y) = %S(my) (normalized geodesic distance).
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Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke 17, Skriganov '17)

Sd §d =1
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Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke 17, Skriganov '17)

[Dr2 bem (Z)]? = [DR (D)2 =

L2 cap

Z dzz,z]

1,j=1

N)Ir—t
2|H
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Stolarsky principle for hemispheres

Theorem (DB, Dai, Matzke ’17, Skriganov ’17)

Corollary (DB, Dai, Matzke "17)

For any Z = {z1,...,2n} C S%

1 N
7z D Az %) <
|

N | =

with equality if and only if Z is symmetric.
(This solves a 1959 conjecture of Fejes Téth.)
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Discrete energy

Let Z = {z1,...,2x} C S? and let F: [-1,1] = R.
Discrete energy:

N
1
Er(Z) = 553 > Pz 2)
ij=1

Questions:
m What are the minimizing configurations?
m Almost minimizers?

m Lower bounds?

Dmitriy Bilyk Points on the sphere



Energy integral

Let 1 be a Borel probability measure on S¢.

Energy integral
Z//F(x-y) dp(z)dp(y).

S¢ sd

ie. Ep(Z _IF( 254)

Questions:
m What are the minimizers?
m Is o0 a minimizer?

m [s it unique?
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Spherical harmonics and energy minimization

Gegenbauer polynomials form an orthogonal blasis on the space
L2([~1,1],wy) with weight wy(t) = (1 — t*) " 2:

F() ~ Y Flns )"
n=0
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Spherical harmonics and energy minimization

Gegenbauer polynomials form an orthogonal blasis on the space
L2([~1,1],wy) with weight wy(t) = (1 — t*) " 2:

F() ~ Y Flns )"
n=0

Ip(p) = F(n; A)nj;A //Cé(x -y)dp(z)du(y)
n=0

Sd sd
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Spherical harmonics and energy minimization

Gegenbauer polynomials form an orthogonal blasis on the space
L2([~1,1],wy) with weight wy(t) = (1 — t*) " 2:

F() ~ Y Flns )"
n=0
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Spherical harmonics and energy minimization

Gegenbauer polynomials form an orthogonal blasis on the space
L2([~1,1],wy) with weight wy(t) = (1 — t*) " 2:

F() ~ Y Flns )"
n=0
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Positive definite functions on the sphere

Let F € C[—1,1].
m [p(p) is minimized by o iff ﬁ(n, A) >0 for alln > 1.
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Positive definite functions on the sphere

Lemma

Let F € C[—1,1].
m [p(p) is minimized by o iff F(n A)

>0
m o is the unique minimizer of Ir(p) iff F(n,\) > 0 for all
n>1.

for alln > 1.
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Positive definite functions on the sphere

Lemma

Let F € C[—1,1].
m [p(p) is minimized by o iff F(n A)

>0
m o is the unique minimizer of Ir(p) iff F(n,\) > 0 for all
n>1.

for alln > 1.

A function F' € C[—1,1] is called positive definite on the sphere
S? if for any set of points Z = {21, ..., 25} C S¢, the matrix
[F(z - zj)]jvjzl is positive semidefinite, i.e.

ZF -zj)eic; > 0 for all ¢; € R.
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S¢.
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S¢.

Gegenbauer coefficients of F' are non-negative, i.e.

F\(n,A)ZO for all n > 0.
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S¢.

Gegenbauer coefficients of F' are non-negative, i.e.
F\(n,)\) >0 for all n > 0.

For any signed measure p € B the energy integral is
non-negative: Ir(u) > 0.
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Positive definite functions on the sphere

For a function F € C[—1,1] the following are equivalent:
F is positive definite on S¢.

Gegenbauer coefficients of F' are non-negative, i.e.

F(n,\) >0 for all n > 0.

For any signed measure p € B the energy integral is
non-negative: Ir(u) > 0.

There exists a function f € L%UA[—l, 1] such that

F-y) = [ fle-2)f(z-y)do(z), zyes’

i.e. F is the spherical convolution of f with itself.

Fn, A% = F(n,\)
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure s
w.r.t. the function f: [-1,1] - R as

/‘/fxydu /f:z:yda

Sd  sd

da(a;).
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure s
w.r.t. the function f: [-1,1] - R as

Die ) = [ ] [ @ il - o) o)

Sd sS4
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure s
w.r.t. the function f: [-1,1] - R as

2

D s = | ] [ 1@ vitn-e)w)| doto)

Sd sS4

Theorem (DB, R. Matzke, F. Dai, ’17)

Generalized Stolarsky principle:
Let F be positive definite and f as in (iv), then
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Generalized Stolarsky principle

Define the L? discrepancy of a Borel probability measure s
w.r.t. the function f: [-1,1] - R as

2

D s = | ] [ 1@ vitn-e)w)| doto)

Sd sS4

Theorem (DB, R. Matzke, F. Dai, ’17)

Generalized Stolarsky principle:
Let F be positive definite and f as in (iv), then
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Discrepancy /energy bounds

Theorem (DB, F. Dai, ’17)

Assume that F' is positive definite and f as in (iv).
N
1
Let Z ={z1,....,2n} C S and p = N ;_1 0z

m Upper bound:

max (F(1) — F(cos#)).

1
inf D2, .(u) S —
#7=N"L%f N ocp<n-3
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Discrepancy /energy bounds

Theorem (DB, F. Dai, ’17)

Assume that F' is positive definite and f as in (iv).
N
1
Let Z ={z1,....,2n} C S and p = N ;_1 0z

m Upper bound:

max (F(1) — F(cos#)).

1
inf D2, .(u) S —
#7=N"L%f N ocp<n-3

m Lower bound:

~

D? > min  F(k,\).
L27f7N ~ 1§k§N1/d ( )
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Refined lower bounds (DB, Dai, Steinerberger, '17)

m Montgomery-type lemma:

L d N
- log(2 + Li[zi — zl])
SN[ Vst 220 E: ;
) _ +1
n=0k=1 j=1 ij=1 (1+ Lllzi — 2]))

Dmitriy Bilyk Points on the sphere



Refined lower bounds (DB, Dai, Steinerberger, '17)

m Montgomery-type lemma:

L d N
- log(2 + Li[zi — zl])
SN[ Vst 220 E: ;
) _ +1
n=0k=1 j=1 ij=1 (1+ Lllzi — 2]))

m Discrepancy bound:

N
PN log(2 + N'7||z — z]))
min  F(n,\)- 221 (1+ N[z — z])*+1
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Refined lower bounds (DB, Dai, Steinerberger, '17)

m Montgomery-type lemma:

L d N
- log(2 + Li[zi — zl])
S S S vt 2oy a ;
) _ +1
n=0k=1 j=1 ij=1 (1+ Lllzi — 2]))

N
1 A log(2 + NV4||z — z||)

2 > . . L
D72 4(2) 2 min  F(n,\) ~§-:1 (1 + N[z — 2] )&+

1/2
N
1 log (2 + NY4||z; — z|)
Dyoo(Z) > N—33 [ L Y
r2eap(Z) 2 N”Z:: (1+ N[l — 2|1
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