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Optimization Problems in Computer Vision

We are given some image data points y D fyi I i D 1; : : :Ng.

a A deformed circle. b. A deformed circle with clutter

A Bayesian approach is optimal. For example, to describe a circle we use
three parameters .�x ; �y ; r/. S�D.r/.x � �/ � 1 � .x��/2

r2 D 0.

���x ; �
�
y ; r
�� D argmaxP.yj�x ; �y ; r/ D

1
Z
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iD1

e��S2
�D.r/.yi��/
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Optimization Problems in Computer Vision
Extract Multiple Instances of a Shape.

a. Two deformed circles. b. Three ellipses with clutter.

Bayesian approach for more objects require more parameters: difficult to
model and to estimate. Alternative: Hough Transform. Votes

V.�x ; �y ; r/ D
NX

iD1

u
�
1
�
� jS�D.r/.yi � �/j

�
where u.x/ is the Heaviside step function, u D 1 if jS�.xi � �/j �

1
�
and

u D 0 otherwise.
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Optimization Problems in Computer Vision
Extract Multiple Clusters of Points.

We are given some image data points y D fyi I i D 1; : : :Ng.
Classical Gaussian mixture model. In 1D and C clusters

P.yjf�c; �c; �cI c D 1; : : : ;Cg/ D
CX

cD1

�c
1p
2��2

c

e
�
.yi��c/2

2�2
c

where C is the number of classes and normalization 1 D
P

c �c. The EM
algorithm, a statistical one, is one of the preferred choices.
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Optimization Problems in Computer Vision
Elastica and In-painting.

Let the 2D curve � be parameterized by x.s/ with unit tangent
dx.s/

ds D e� D .cos �.s/ ; sin �.s//. The Elastica curve minimizes

S.� / D
Z
�

�
1

2 �2 �
2.s/C 


�
ds

Given parameters �; 
 and an initial position and orientation, fX0; �0g. The
formulation was given by James Bernoulli in 1691.
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Optimization Problems in Computer Vision
Elastica and In-painting.

Mumford gave a statistical version

P.� / D
1
Z

e�S.� /
D

1
Z

lim
n!1
n � D L

e
�
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iD0

�
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2�2
.�i��i�1/2

� C
�

�

and derived the equation

@

@ s
�.x; �; s/ D

�
�2

2
@2

@�2 � e� � r � 

�
�.x; �; s/

to model the density function of the Elastica optimization criteria when view
as a stochastic process.
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Classical Physics and Optimization

F D ma , �
@
@x V.x/ D m d2x.t/

dt2

Lagrangian: L
�

x.t/; dx.t/
dt

�
D

1
2m

�
dx.t/

dt

�2
� V.x/.

Action: S.XT / D
R T
0 L.x.t/; Px.t// dt,

where XT D fx.t/I t 2 �0; T �g is a path.

Euler Lagrange Equation to find the local optimal path
X �T D fX �.t/I t 2 �0; T �g

d
dt

�
@L.x; Px/
@Px

�
�
@L.x; Px/
@x

D 0 ) F D ma
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Optics and Optimization

Optics and Fermat Principle: Light travel shortest time path between A and
B.
The trajectory of light X B

A D fx.t/I t 2 �tA; tB�g "optimizes" the total amount of
time

X �AB D arg localmin T.XAB/ D

Z tB

tA
dt D

1
c

Z B

A
n.x/dx

where dx
dt D v.x/ D c

n.x/ , with
v.x/- speed of light in a medium with refractive index n.x/,
c- speed of light in vacuum.

Snell’s law, n1 sin �1 D n2 sin �2, follows from it.
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From Classical Optics to Wave Optics

Optics and Fermat Principle: Light travel shortest time path between
A and B.

T.XAB/ D

Z tB

tA
dt D

1
c

Z B

A
n.x/dx

Wave Optics: Optimization criteria becomes a phase. Sum over all
paths.

E.x D B/ D
P

XAB
eiT.XAB/ D

P
XAB

ei 1c
R B
A n.x/dx

special case: constant index n:
E.x D B/ D

P
XAB

ei 1c njXABj D
P

XAB
eik jXABj, where k D n

c .
Another View: Maxwell’s equations

r2E.x; t/ D
� n

c

�2 @2

@t2 E.x; t/ and for E.x; t/ D E.x/e�iwt

r
2E.x/C k2.x/E.x/ D 0
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Quantum Path Integral

Consider states x.t/ that may vary over time. Wave propagation

 T .x.T// D
Z

dX T
0

1
Z

ei 1
�

S.X T
0 /  0.x.0// ;

where X T
0 is a path from initial state x.0/ to final state x.T/ and a

hyper-parameter � is introduced. The integral is over all possible paths. The
Optimization criteria becomes a phase. Sum over all paths.

Born rule: Probability is derived as P.x; t/ D j t.x.t//j2
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Complex-Valued Hough Transform for Circle
Detection

Hough transform for circles: When tangent information is available, and the
radius is unknown, every point votes for the line perpendicular to the tangent.

Filter Responses: .V.y/; �.y/C �
2 / D .maxj Vj.y/; argmaxjVj.y//

Edges: maximum wavelet response at y over all orientation j (as long as
V.y/ > Th, an empirically defined threshold).
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Experiments setting for Circle Detection
vote type weighted vote

constant real yes �V .x/ D
P

yWx2l.y/ V.y/

constant real no �.x/ D
P

yWx2l.y/ 1

complex yes  V .x/ D
P

yWx2l.y/ V.y/eikjx�yj

complex no  .x/ D
P

yWx2l.y/ eikjx�yj

The shape likelihood, L, is defined as L.x/ D �.x/2 and L.x/ D j .x/j2,
respectively. Detecting shapes consists of finding local maxima in L.
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