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Continuous Ø discrete analogies

Most standard techniques for reduced basis methods can be understood from
numerical linear algebra.

Kolmogorov n widths Ø Singular value decompositions

Reduced basis methodsØ QR decompositions

Empirical interpolation methodsØ LU decompositions
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Kolmogorov n widths are (essentially) singular values
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Singular value decompositions

Let A P R
MˆN , with M " N .

We will think of the columns of A as snapshots.

A :“

¨

˝ a1 a2 ¨ ¨ ¨ aN

˛

‚

The SVD of A is

A “ UΣV T ,

where U and V are orthogonal M ˆM and N ˆN matrices, respectively.
Σ is a diagonal matrix with non-negative entries.

We’ll use the following non-standard notation for the entries in Σ:

σ0 ě σ1 ě ¨ ¨ ¨ ě σN´1.

A. Narayan (U. Utah – SCI) NLA and ROM



Low-rank approximations

Among the nice properties of the SVD is its ability to form low-rank approximations,

Ak :“ UkΣkV
T
k , 1 ď k ď N,

where Uk and V k are k-column truncations, and Σk is a k ˆ k principcal
submatrix truncation.

With rankpAkq “ k, then

Ak “ arg min
rankpBqďk

}A´B}
˚
,

for ˚ “ 2, F .

Equivalently, Ak is the projection of the columns of A onto RpUkq:

Ak “

¨

˝ PRpUkq
a1 PRpUkq

a2 ¨ ¨ ¨ PRpUkq
aN

˛

‚
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Projections onto arbitrary spaces

What if we project A onto other spaces?

If V Ă RM is any subspace, we could consider

P VA :“

¨

˝ P V a1 P V a2 ¨ ¨ ¨ P V aN

˛

‚

And we could ask about a certain type of error committed by this approximation

EpV q :“ max
}x}2“1

}Ax´ P VAx}2

We know V “ RpUkq does a pretty good job. What about other spaces?
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Optimal projections

For a given rank k, an “optimal” projection commits the smallest error:

Ek :“ min
VĂRM

EpV q

So an extremal characterization of an SVD-based low rank approximation is

RpUkq “ arg min
VĂRN

max
}x}2“1

}Ax´ PAx}2 .

Or, an (unnecessarily?) pedantic alternative:

Ek “ σkpAq “ min
VĂRN

max
}x}2“1

min
vPV

}Ax´ v}2
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SVD projections

Given A P R
MˆN , the success of a low-rank projection is dictated by the

approximation numbers

σkpAq “ min
VĂRN

max
}x}2“1

min
vPV

}Ax´ v}2 .

More precisely, it is dictated by fast decay of these numbers as k increases.

These numbers are defined by our choice of metric on “output” space RM ,
and our choice of metric on “measurement” space RN .

I.e., a generalization might look like

σk
´

A; `p
´

R
M
¯

, `q
´

R
N
¯¯

“ min
dimVďk

max
}x}q“1

min
vPV

}Ax´ v}p .
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Kolmogorov n widths

σn
´

A; `p
´

R
M
¯

, `q
´

R
N
¯¯

“ min
dimVďn

max
}x}q“1

min
vPV

}Ax´ v}p .

These numbers tell us how well the columns of A are `p-approximated by a linear
space using `q measurements.

Another definition might be the maximum column norm error:

σn
´

A; `p
´

R
M
¯¯

“ min
dimVďn

max
iPrNs

min
vPV

}Aei ´ v}p .

Great. How do we do all this with functions?

Let A be a collection of functions in a Hilbert space H.

Then one way to talk about similar concepts to (`2) singular values is

σn pA;Hq “ inf
dimVďn

sup
aPA

inf
vPV

}a´ v}

This is called the Kolmogorov n width of A (with respect to H).
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Reduced basis methods (essentially) perform QR decompositions
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Interpolative decompositions

One disadvantage of SVD-based low rank approximations,

A “

¨

˝ a1 a2 ¨ ¨ ¨ aN

˛

‚“ UΣV T ,

is that we need information from all columns of A to define U .

One alternative: Interpolative decompositions, or matrix skeletonizations.

Basic idea: project all columns of A onto a subspace spanned by a few columns.

A rank-n column skeletonization of A is

B “ AS

´

AT
SAS

¯:

AT
S

l jh n

PRpASq

A, AS :“ A

¨

˝ es1 es2 ¨ ¨ ¨ esn

˛

‚,

with S “ ts1, . . . snu Ă rN s.
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Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset
selection problem.

For metrics of interest, it’s NP-hard.

So let’s do something else: Let’s pick columns greedily:

Given S Ă rN s of size n, we’ll add a column index via the procedure

sn`1 “ arg max
jPrNs

›

›aj ´ PRpASq
aj

›

›

2
.

This is much cheaper since I need only to evaluate N vector norms at each step.

There’s already a well-polished algorithm that does this: the QR decomposition.
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The QR decomposition (1/2)

The column-pivoted QR decomposition iteratively computes orthonormal vectors in
the range of A.

At step j, the next column is identified as the one whose projected residual is
largest.

P j´1 :“ Qj´1Q
T
j´1

sj “ arg max
jPrNs

}aj ´ P j´1aj}2

qj :“
asj
}asj }2

, Qj “
“

Qj´1, qj
‰

The residual

rj´1 :“
›

›asj ´ P j´1asj
›

›

2
,

is the largest (`2-norm) column mistake we make by choosing S “ ts1, . . . , sj´1u,
i.e., by replacing

AÐ P VA, V :“ spantas1 , . . . ,asj´1u.
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The QR decomposition (2/2)

This algorithm is a greedy algorithm: instead of all-at-once optimization, we
optimize one at a time.

Clearly, we don’t expect this to perform as well as the optimal SVD-based subspace.

But how well does this greedy procedure work in practice?
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Discrete greedy algorithms

In some cases, this greedy algorithm performs comparably to an optimal (SVD)
algorithm.

In particular,

σrpAq À expp´brq ùñ sj À expp´crq,

where c ă b.[Harbrecht, Peters, Schneider 2010]
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Back to the continuous world

Once more, let’s put this into appropriate language for functions.

Let A be a collection of functions, parameterized by µ P Rd,

A “
!

upµq
ˇ

ˇ µ P Γ Ă Rd
)

.

A greedy (pivoted QR!) approach to determining a low-rank space for
approximation is

µj “ arg max
µPΓ

}upµq ´ Pj´1upµq} ,

where Pj´1 is the projection operator onto spantupµ1q, . . . , upµj´1qu.

This is (essentially) the reduced basis method.
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Residuals?

One disadvantage of SVD-based low rank approximations is that we need all
columns of A.

(“One disadvantage of Kolmogorov n-width low rank approximations is that we
need all functions in A.”)

A “QR” approach still requires the residual

µj “ arg max
µPΓ

}upµq ´ Pj´1upµq} ,

which, naively, still requires upµq.

RBM methods get around this in the same way that one can get around knowing
exact solutions to linear systems:

Ljaj “ bj ùñ }aj ´ z} ď
1

σminpLjq
}bj ´Ljz}2
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RBM and QR decompositions

RBM algorithms perform snapshot-based model reduction via a QR decomposition.

L pupµq;µq “ bpµq

ó

}upµq ´ Pj´1upµq} ď
1

“σminpLq”
}bpµq ´ L pPj´1upµq;µq}2 (1)

This residual:

can be computed without computing u if Lp¨;µq depends on µ in an affine way,

provides a rigorous bound on error committed if “σminpLq” can be computed
(a posteriori error estimates)

Even though (1) is only an inequality, this “weak” greedy algorithm still produces a
good approximation, assuming the n width decays quickly.
[Binev, Cohen, Dahmen, Devore, Petrova, Wojtaszczyk 2011], [Devore, Petrova,
Wojtaszczyk 2013]
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Empirical interpolation methods (essentially) perform LU decompositions
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Affine dependence

Many times, L does not depend on µ in an affine way.

In particular, L may contain functions of µ, e.g.,

Lpu;µq “ ´∇x ¨ p`px;µq∇xqu.

This is affine only if

`px;µq “
d
ÿ

i“1

fipµq`ipxq.

An affine approximation for L (i.e., for `) is often accomplished via empirical
interpolation.[Barrault, Maday, Nguyen, Patera 2004]
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Empirical interpolation
Once again, let’s understand this in the discrete setting:

L “

¨

˝ `1 `2 ¨ ¨ ¨ `N

˛

‚

One consequence of continuous problem practicalities: want to avoid computing
column norms.

One strategy is an “incomplete” LU factorization. A (complete-pivoting)
factorization is

PLQ “ ZU ,

where Z is lower triangular, and P and Q are permutation matrices. An
approximation would be an incomplete factorization:

PLQ « ZdUd,

where Zd (Ud) is a principal d-column (-row) truncation. In the continuous
setting, this is called the empirical interpolation method (EIM).

P : Spatial points for interpolation
Q: Parameter values defining snapshots used for spatial interpolation
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Continuous Ø discrete analogies

Kolmogorov n widths Ø Singular value decompositions

Reduced basis methodsØ QR decompositions

Empirical interpolation methodsØ LU decompositions

Bonus! Why do Kolmogorov n widths decay quickly? (for “nice” problems)
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Polynomial approximations

Recall some complex analysis:

Suppose f : CÑ C is a holomorphic function in some open disc D of the complex
plane.

Let Γ be a subset of D, with Γ̄ Ă D, and dpΓ, BDq ě r.

Then Taylor’s theorem implies that if p is the degree-n Taylor polynomial centered
around any z0 P Γ then

sup
zPΓ

}fpzq ´ ppzq} À r´n.

I.e., polynomial approximations are exponentially accurate for smooth functions.
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Parameterized elliptic PDEs (1/2)

Now consider the elliptic PDE

´∇x p`px;µq∇xq “ bpx;µq.

Suppose `px;µq is continuous, is µ-uniformly bounded, depends on µ in an affine
way, and

inf
x
`px, ;µq ą rmin ą 0,

uniformly for µ P Γ Ă Rd. Let 0 P Γ.

Then the solution µ ÞÑ upµq exists and is well-defined in some Hilbert space H.

Under these conditions, then

µ ÞÑ up¨, µq

is (complex) differentiable in an open disc D, with distpΓ, BDq „ rmin.

In particular, all µ-derivatives of u at µ “ 0 exist and are H-valued.
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Under these conditions, then

µ ÞÑ up¨, µq

is (complex) differentiable in an open disc D, with distpΓ, BDq „ rmin.

In particular, all µ-derivatives of u at µ “ 0 exist and are H-valued.
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Parameterized elliptic PDEs (2/2)

Since µ ÞÑ upµq is complex differentiable in Γ with radius rmin:

Taylor’s Theorem guarantees a degree-n, d-variate polynomial approximation pn
with N À nd degrees of freedom such that

sup
µPO

}upµq ´ pnpzq} À r´nmin „ r´N
p1{dq

min

Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N , but
suffers the curse of dimensionality.[Cohen, Devore 2015]

In short, Kolmogorov widths decay quickly when u depends smoothly on the
parameter, but suffer from (classical) approximation limitations.

A. Narayan (U. Utah – SCI) NLA and ROM



Parameterized elliptic PDEs (2/2)

Since µ ÞÑ upµq is complex differentiable in Γ with radius rmin:

Taylor’s Theorem guarantees a degree-n, d-variate polynomial approximation pn
with N À nd degrees of freedom such that

sup
µPO

}upµq ´ pnpzq} À r´nmin „ r´N
p1{dq

min

Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N , but
suffers the curse of dimensionality.[Cohen, Devore 2015]

In short, Kolmogorov widths decay quickly when u depends smoothly on the
parameter, but suffer from (classical) approximation limitations.

A. Narayan (U. Utah – SCI) NLA and ROM


