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Continuous «> discrete analogies

Most standard techniques for reduced basis methods can be understood from
numerical linear algebra.

Kolmogorov n widths <« Singular value decompositions

Reduced basis methods <> QR decompositions

Empirical interpolation methods «» LU decompositions
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Kolmogorov n widths are (essentially) singular values
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Singular value decompositions

Let A e R™*N with M » N.

We will think of the columns of A as snapshots.
A = aq a2 s anN

The SVD of A is
A=UxVT,

where U and V are orthogonal M x M and N x N matrices, respectively.
3 is a diagonal matrix with non-negative entries.

We'll use the following non-standard notation for the entries in X:
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Low-rank approximations

Among the nice properties of the SVD is its ability to form low-rank approximations,
A, =U,Z, V7, 1<k<N,

where Uy and Vi are k-column truncations, and Xy is a k x k principcal
submatrix truncation.

With rank(Ay) = k, then
Ay = argmin |A - B|,,

rank(B)<k

for x =2, F.
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Low-rank approximations

Among the nice properties of the SVD is its ability to form low-rank approximations,
A, =U,Z, V7, 1<k<N,

where Uy and Vi are k-column truncations, and Xy is a k x k principcal
submatrix truncation.

With rank(Ay) = k, then
Ay = argmin |A - B|,,

rank(B)<k
for x =2, F.

Equivalently, Ay is the projection of the columns of A onto R(Uy):

A =| Prw,a1 Pru,yaz -+ Pru,an
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Projections onto arbitrary spaces

What if we project A onto other spaces?

If V < RM is any subspace, we could consider

PvA = Pva1 Pvaz

Pyan

A. Narayan (U. Utah —scClI)

NLA and ROM



Projections onto arbitrary spaces

What if we project A onto other spaces?

If V < RM is any subspace, we could consider

PvA = Pva1 Pvaz PVaN

And we could ask about a certain type of error committed by this approximation

E(V):= max |Az — PvAz|,

[zll2=1

We know V = R(U}) does a pretty good job. What about other spaces?
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Optimal projections

For a given rank k, an “optimal” projection commits the smallest error:

Ey = min E(V)
VcRM
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Optimal projections

For a given rank k, an “optimal” projection commits the smallest error:

Ey = min E(V)
VcRM

So an extremal characterization of an SVD-based low rank approximation is

R(U}) = argmin max |Az — PAz|, .

VcRN lzll2=
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Optimal projections

For a given rank k, an “optimal” projection commits the smallest error:

Ey = min E(V)
VcRM

So an extremal characterization of an SVD-based low rank approximation is

R(U}) = argmin max |Az — PAz|, .

VcRN lzll2=
Or, an (unnecessarily?) pedantic alternative:

Er =0or(A) = min  max min|Az —v],
VcRN  |z|2=1 wveV
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SVD projections

Given A € RM*YN | the success of a low-rank projection is dictated by the
approximation numbers

ox(A) = min [max - min |Az — v, .

More precisely, it is dictated by fast decay of these numbers as k increases.
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SVD projections

Given A € RM*YN | the success of a low-rank projection is dictated by the
approximation numbers

ox(A) = min [max - min |Az — v, .

More precisely, it is dictated by fast decay of these numbers as k increases.

These numbers are defined by our choice of metric on "output” space R,
and our choice of metric on “measurement” space R”.

l.e., a generalization might look like

& (A; 148 (]RM) , 0 (]RN)) = digl‘i/nék max {Jrém [Az — ], .

lelq=1
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Kolmogorov n widths

On (A; o (]RM) 07 (]RN)) = min max min|Az —v|, .
dimV<n p

|z]q=1 wveV

These numbers tell us how well the columns of A are ¢P-approximated by a linear
space using ¢? measurements.

Another definition might be the maximum column norm error:

On (A;Z’D (]RM)) = min  max min|Ae; —v],.

dimV<n {€[N] wveV

Great. How do we do all this with functions?
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Kolmogorov n widths

On (A; o (]RM) 07 (]RN)) = min max min|Az —v|, .
dimV<n p

|z]q=1 wveV

These numbers tell us how well the columns of A are ¢P-approximated by a linear
space using ¢? measurements.

Another definition might be the maximum column norm error:

On (A;Z’D (]RM)) = min  max min|Ae; —v],.

dimV<n {€[N] wveV

Great. How do we do all this with functions?

Let A be a collection of functions in a Hilbert space H.
Then one way to talk about similar concepts to (¢2) singular values is

on (A;H)

= inf sup inf |a—|
dimV<n 44 veEV

This is called the Kolmogorov n width of A (with respect to H).
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Reduced basis methods (essentially) perform QR decompositions
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Interpolative decompositions

One disadvantage of SVD-based low rank approximations,

A: a1 a2 anN :UEVT,

is that we need information from all columns of A to define U.
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Interpolative decompositions

One disadvantage of SVD-based low rank approximations,

A: a1 a2 anN :UEVT,

is that we need information from all columns of A to define U.
One alternative: Interpolative decompositions, or matrix skeletonizations.
Basic idea: project all columns of A onto a subspace spanned by a few columns.

A rank-n column skeletonization of A is

T f T
B:AS<A5AS> AT A, As=A| e, e - es |,
Prag)

with S = {s1,...sn} C [N].
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Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset
selection problem.

For metrics of interest, it's NP-hard.
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Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset
selection problem.

For metrics of interest, it's NP-hard.
So let's do something else: Let's pick columns greedily:
Given S < [N] of size n, we'll add a column index via the procedure

Sp4+1 = arg max ”aj — PR(AS)ajH2 .
Je[N]

This is much cheaper since | need only to evaluate N vector norms at each step.
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Choosing the columns S

The problem of choosing S that is optimal in some metric is the column subset
selection problem.

For metrics of interest, it's NP-hard.
So let's do something else: Let's pick columns greedily:
Given S < [N] of size n, we'll add a column index via the procedure

Sp4+1 = arg max ”aj — PR(AS)ajH2 .
Je[N]

This is much cheaper since | need only to evaluate N vector norms at each step.

There's already a well-polished algorithm that does this: the QR decomposition.
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The QR decomposition (1/2)

The column-pivoted QR decomposition iteratively computes orthonormal vectors in
the range of A.

At step j, the next column is identified as the one whose projected residual is
largest.

T
P, = Qj—le—l

s; = argmax |a; — P; 1a,],
JE[N]
as.

q]' = | J 5 Qj = [ijh qj]

|as; 2
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The QR decomposition (1/2)

The column-pivoted QR decomposition iteratively computes orthonormal vectors in
the range of A.

At step j, the next column is identified as the one whose projected residual is
largest.

T
P;1=Q;.,Q;_,

s; = argmax |a; — P; 1a,],

je[N]
as,
q; = Ha5j H27 Qj = [iju Qj]
The residual
rj-1 = |as; — Pj_1as, ‘2’
is the largest (¢£2-norm) column mistake we make by choosing S = {s1,...,s;-1},
i.e., by replacing
A~ PyA, V = span{as,,...,as;_,}.
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The QR decomposition (2/2)

This algorithm is a greedy algorithm: instead of all-at-once optimization, we
optimize one at a time.

Clearly, we don't expect this to perform as well as the optimal SVD-based subspace.

But how well does this greedy procedure work in practice?
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Discrete greedy algorithms

In some cases, this greedy algorithm performs comparably to an optimal (SVD)
algorithm.

In particular,
or(A) Sexp(—br) = s; <exp(—cr),

where ¢ < b.[Harbrecht, Peters, Schneider 2010]
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Back to the continuous world

Once more, let’s put this into appropriate language for functions.

Let A be a collection of functions, parameterized by 1 € R,

A={u(u) | peFC]Rd}.
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Back to the continuous world

Once more, let’s put this into appropriate language for functions.

Let A be a collection of functions, parameterized by 1 € R,
A= {u(u) | ueFC]Rd}.

A greedy (pivoted QR!) approach to determining a low-rank space for
approximation is

pj = argmax |u(p) — Pj-ru(p)|,
pel’

where P;_1 is the projection operator onto span{u(p1),...,u(w;-1)}.
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Back to the continuous world

Once more, let’s put this into appropriate language for functions.

Let A be a collection of functions, parameterized by 1 € R,
A= {u(u) | ueFC]Rd}.

A greedy (pivoted QR!) approach to determining a low-rank space for
approximation is

pj = argmax |u(p) — Pj-ru(p)|,
pel’

where P;_1 is the projection operator onto span{u(p1),...,u(w;-1)}.

This is (essentially) the reduced basis method.
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Residuals?

One disadvantage of SVD-based low rank approximations is that we need all
columns of A.

(“One disadvantage of Kolmogorov n-width low rank approximations is that we
need all functions in A.")
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Residuals?

One disadvantage of SVD-based low rank approximations is that we need all
columns of A.

(“One disadvantage of Kolmogorov n-width low rank approximations is that we
need all functions in A.")
A “QR" approach still requires the residual

pj = argmax |u(p) — Pj-ru(p)|,
pel’

which, naively, still requires u(u).
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Residuals?

One disadvantage of SVD-based low rank approximations is that we need all
columns of A.

(“One disadvantage of Kolmogorov n-width low rank approximations is that we
need all functions in A.")

A “QR" approach still requires the residual

pj = argmax |u(p) — Pj-ru(p)|,
pel’

which, naively, still requires u(u).

RBM methods get around this in the same way that one can get around knowing
exact solutions to linear systems:

1

b, — L.
omin(L;) [b; iZls

Lja; =b; = |a;—z| <
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RBM and QR decompositions

RBM algorithms perform snapshot-based model reduction via a QR decomposition.

L (u(p); p) = b(p)
]

() — Pyru()] < ﬁ 1b() — £ (Pyvu(m); )] (1)
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RBM and QR decompositions

RBM algorithms perform snapshot-based model reduction via a QR decomposition.

L (u(p); p) = b(p)
]

() — Pyru()] < ﬁ 1b() — £ (Pyvu(m); )] (1)

This residual:
@ can be computed without computing w if £(+; 1) depends on p in an affine way,

@ provides a rigorous bound on error committed if “omin(£)" can be computed

(a posteriori error estimates)
Even though (1) is only an inequality, this “weak” greedy algorithm still produces a

good approximation, assuming the n width decays quickly.
[Binev, Cohen, Dahmen, Devore, Petrova, Wojtaszczyk 2011], [Devore, Petrova,

Wojtaszczyk 2013]

NLA and ROM

A. Narayan (U. Utah —scCl)



Empirical interpolation methods (essentially) perform LU decompositions
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Affine dependence

Many times, £ does not depend on p in an affine way.
In particular, £ may contain functions of u, e.g.,
L(uyp) = =V - (1) Ve) u.

This is affine only if

Lz p) = Z Ji(w)i(x).

s
Il
-
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Affine dependence

Many times, £ does not depend on p in an affine way.
In particular, £ may contain functions of u, e.g.,
L(uyp) = =V - (1) Ve) u.

This is affine only if

d
Lz p) = Z Ji(w)i(x).

An affine approximation for £ (i.e., for £) is often accomplished via empirical
interpolation.[Barrault, Maday, Nguyen, Patera 2004]
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Empirical interpolation

Once again, let's understand this in the discrete setting:

L=| & £ --- €y

One consequence of continuous problem practicalities: want to avoid computing
column norms.
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Empirical interpolation

Once again, let's understand this in the discrete setting:

L=| & £ --- €y

One consequence of continuous problem practicalities: want to avoid computing
column norms.

One strategy is an “incomplete” LU factorization. A (complete-pivoting)
factorization is

PLQ = ZU,

where Z is lower triangular, and P and Q are permutation matrices.
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Empirical interpolation

Once again, let's understand this in the discrete setting:

L=| & £ --- €y

One consequence of continuous problem practicalities: want to avoid computing
column norms.

One strategy is an “incomplete” LU factorization. A (complete-pivoting)
factorization is

PLQ = ZU,

where Z is lower triangular, and P and @ are permutation matrices. An
approximation would be an incomplete factorization:

PLQ X ZdUd,

where Z4 (Uy) is a principal d-column (-row) truncation.
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Empirical interpolation

Once again, let's understand this in the discrete setting:

L=| & £ --- €y

One consequence of continuous problem practicalities: want to avoid computing
column norms.

One strategy is an “incomplete” LU factorization. A (complete-pivoting)
factorization is

PLQ = ZU,

where Z is lower triangular, and P and @ are permutation matrices. An
approximation would be an incomplete factorization:

PLQ X ZdUd,

where Z; (Uy) is a principal d-column (-row) truncation.  In the continuous
setting, this is called the empirical interpolation method (EIM).

P: Spatial points for interpolation
Q: Parameter values defining snapshots used for spatial interpolation
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Continuous «> discrete analogies

Kolmogorov n widths <> Singular value decompositions

Reduced basis methods <> QR decompositions

Empirical interpolation methods «» LU decompositions
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Continuous «> discrete analogies

Kolmogorov n widths <> Singular value decompositions

Reduced basis methods <> QR decompositions

Empirical interpolation methods «» LU decompositions

Bonus! Why do Kolmogorov n widths decay quickly? (for “nice” problems)
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Polynomial approximations

Recall some complex analysis:

Suppose f : C — C is a holomorphic function in some open disc D of the complex
plane.

Let T be a subset of D, with T' = D, and d(T",éD) > r.
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Polynomial approximations

Recall some complex analysis:

Suppose f : C — C is a holomorphic function in some open disc D of the complex
plane.

Let T be a subset of D, with T' = D, and d(T",éD) > r.

Then Taylor's theorem implies that if p is the degree-n Taylor polynomial centered
around any zg € I then

sup | f(z) —p(z)| <"

zel
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Polynomial approximations

Recall some complex analysis:

Suppose f : C — C is a holomorphic function in some open disc D of the complex
plane.

Let T be a subset of D, with T' = D, and d(T",éD) > r.

Then Taylor's theorem implies that if p is the degree-n Taylor polynomial centered
around any zg € I then

sup | f(z) —p(z)| <"

zel

l.e., polynomial approximations are exponentially accurate for smooth functions.
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Parameterized elliptic PDEs (1/2)

Now consider the elliptic PDE
—Va (U(z; 1) Va) = blz; p).

Suppose ¢(x; (1) is continuous, is u-uniformly bounded, depends on p in an affine
way, and

inf €(z,; p) > rmin > 0,

uniformly for pe ' c R%. Let 0 eI

Then the solution p — u(u) exists and is well-defined in some Hilbert space H.
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Parameterized elliptic PDEs (1/2)

Now consider the elliptic PDE
—Va (U(z; 1) Va) = blz; p).

Suppose ¢(x; (1) is continuous, is u-uniformly bounded, depends on p in an affine
way, and

inf €(z,; p) > rmin > 0,

uniformly for pe ' c R%. Let 0 eI

Then the solution p — u(u) exists and is well-defined in some Hilbert space H.
Under these conditions, then

= ’LL(~, :U’)
is (complex) differentiable in an open disc D, with dist(I",0D) ~ rmin.

In particular, all u-derivatives of u at u = 0 exist and are H-valued.
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Parameterized elliptic PDEs (2/2)

Since p — u(u) is complex differentiable in I' with radius rmin:

Taylor's Theorem guarantees a degree-n, d-variate polynomial approximation p,,
with N < n? degrees of freedom such that
_ _N/D
sup HU(M) - p"(Z)H S Tm?n ~ Tmin
neo
Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N, but
suffers the curse of dimensionality.[Cohen, Devore 2015]
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Parameterized elliptic PDEs (2/2)

Since p — u(u) is complex differentiable in I' with radius rmin:

Taylor's Theorem guarantees a degree-n, d-variate polynomial approximation p,,
with N < n? degrees of freedom such that
_ _N/D
sup HU(M) - p"(Z)H S Tm?n ~ Tmin
neo
Hence, the Kolmogorov width of the manifold of solutions (in H) decays in N, but
suffers the curse of dimensionality.[Cohen, Devore 2015]

In short, Kolmogorov widths decay quickly when u depends smoothly on the
parameter, but suffer from (classical) approximation limitations.
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