Speaker: Lauren Williams, Harvard University

Teaching Assistants: Jonathan Boretsky, Sunita Chepuri, Charles Wang
EXERCISES FOR THE ICERM CLUSTER ALGEBRA CLASS.

LECTURER: LAUREN WILLIAMS
TA’S: JONATHAN BORETSKY, SUNITA CHEPURI, CHARLES WANG

(1) Mutate the following quiver at vertex 1. Alternatively, mutate the quiver at vertex 2.

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \\
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \\
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

(2) Start with the following labelled seed and perform the following sequence of mutations: \(\mu_1, \mu_3, \mu_2, \mu_1, \mu_3, \mu_2, \mu_1, \mu_3, \mu_2, \mu_1, \mu_3, \mu_2, \). Compute the cluster variables you get at each step and make sure that they are Laurent polynomials in \(\{x_1, x_2, x_3\} \) with positive coefficients.

\[\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \\
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

(3) Verify that for any quiver \(Q \) and vertex \(k \), \(\mu_k^2(Q) = Q \).

(4) If \(T \) is a triangulation and \(T' \) is obtained by flipping at diagonal \(d \), then \(Q'_T = \mu_d(Q_T) \). (Try verifying in some examples, then prove it.)

(5) Prove that for any \(A \in Gr_{2,n} \) and for any \(i < j < k < \ell \),
\[p_{ik}(A)p_{j\ell}(A) = p_{ij}(A)p_{k\ell}(A) + p_{i\ell}(A)p_{jk}(A). \]

(6) Draw the flip graph of the triangulations of a hexagon.

(7) (To do after the second lecture) Show that the rectangles seed gives a cluster structure on \(\mathbb{C}[Gr_{k,n}] \). More specifically:
- Show that if one mutates at any mutable cluster variable, the new cluster variable is a regular function which is coprime to the old cluster variable (so that one can apply the Starfish Lemma).
- Show that one can obtain any Plücker coordinate from the rectangles seed by an appropriate sequence of mutations.

(8) (To do after the second lecture) Although the equation
\[P_{135}P_{246} - P_{134}P_{256} - P_{136}P_{245} - P_{123}P_{456} = 0 \]
does not lie in the ideal generated by the exchange relations, show that we can multiply it by a monomial in the Plücker coordinates so that the result lies in the exchange ideal.