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Motivation: Post-Quantum Cryptography

» DH (1976)
» ECDH (1986)
» Shor's algorithm (1994)

How do we make elliptic curve cryptography into something
post-quantum?
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SIDH

Supersingular Isogeny Diffie-Hellman (Jao and De Feo, 2011):
» An analog of Diffie-Hellman, using supersingular isogenies.
What are supersingular isogenies?
> See next slide(s).
Why isogenies?
» Because they seem to work (discussed later in this talk).
Why supersingular isogenies?

» Because we broke non-supersingular isogenies (ANTS IX,
J. Math. Cryptol. 8(1), 2014).
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Elliptic curves

Definition
An elliptic curve over a field F is a nonsingular plane curve E of
the form y? = x3 + agx + ag, for fixed as,ag € F.

The set of projective points on an elliptic curve forms a group.
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Isogenies

Definition
An isogeny is a morphism ¢ of algebraic varieties between two
elliptic curves, such that:

> ¢ is a group homomorphism.

Concretely:
¢: E— E
¢(X>y) = (¢x(an)a¢y(XaY))
o fl(x7y)
¢X(X7y) - fZ(X,)/)
_ailx,y)
¢)’(X7Y) - gQ(X,}/)

(1, f2, g1, and g are all polynomials)
CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)



Constructing isogenies
Vélu (1971): Let G be any finite subgroup of an elliptic curve E.
Let S be a set of representatives of G/~, where ~ is the relation
P~ @Q <= P = +4Q. Then there exists an isogeny ¢: E — E’
with ker ¢ = G, given by

¢X(x,y):x-|—z [XiQXQ+( uQ

Qes x = xQ)?
2y Y —YQ 8584
by(x,y) =y — U ————3 *+ tQ -
g C%:S (x=x@)* = T(x—x)* (x—xq)?

Q@ = (x@,¥q)
g0 = 3xé + a4
85 =-20q

X fFO=—
to = 80 | Q Q

2g5 if Q#—Q

—_ (Y2
UQ - (gQ) CENTRE FOR APPLIED CRYPTOGRAPHIC RESEARCH (CACR)



Vélu's formula

Remarks:
» Computational complexity of the formula is O(|G]).

» The isogeny ¢ and the codomain E’ are unique up to
isomorphism (a kernel determines a group homomorphism, up
to isomorphism).

» Borrowing notation from group theory, we denote E’ by E/G.
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Basic key exchange

1. Public parameters: An elliptic curve E defined over a finite
field F.

2. Alice chooses a kernel A and sends E/A to Bob.
3. Bob chooses a kernel B and sends E/B to Alice.
4. The shared secret is (E/A)/B = (E/B)/A.

E— " L E/A

dn{ l

E/B—— (E/A)/B
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Questions

E—" L, E/A

¢Bl l

E/B —— (E/A)/B

> In order to be secure, A and B must be of cryptographic size,
but Vélu's formulas are impractical for such large kernels.

» In order to compute (E/A)/B, Bob needs not only E/A but
also the image of B in E/A, i.e. ¢pa(B). But B is known only
to Bob, and ¢, is known only to Alice.
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Isogenies with large kernels

» In order to compute E/A for large A, we arrange it so that A
is isomorphic to Z/2°7Z. Then the subgroup tower

0CZJ/2Z CZJAZ C --- CZLJ2°Z
yields the chain of isogenies
E— E/(Z)2Z) — E/(Z/AZ) — --- — E/(Z/2°7)

of length e, whose composition equals E — E/A. Each
isogeny in the chain is easy to compute.

» Similarly, we arrange Bob's B to be isomorphic to Z/3fZ.
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Constructing suitable elliptic curves

In order to obtain the necessary A’s and B's:

» We require an elliptic curve over a finite field, containing a
point of order 2¢, and a point of order 3.

» The field size, and the quantities 2¢ and 3, should be of
cryptographic size.

» The extension degree of the field needs to be much smaller
than cryptographic size.

Strategy:

» Let E be the curve y? = x3 + x, defined over a prime p such
thatp+1=2°¢-3". g
Then p =3 (mod 4) and #E(F,) = p+ 1 (easy)
Embedding degree of E is 2 (Menezes-Okamoto-Vanstone)
Hence E(F,2) = (Z/(2¢ - 3" - g)Z)?
Let A be a one-dimensional subgroup of (Z/2°Z)? C E(F ).
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Computing (E/A)/B

v

Alice knows ¢4 and Bob knows B.

Fix a generating set {P, Q} of (Z/37Z)? C E(F,2).

Let mP + nQ be a generator of B.

Alice computes ¢a(P) and ¢a(Q) and sends them to Bob.

Bob computes

v

v

v

v

moa(P) + npa(Q) = pa(mP + nQ)

to obtain ¢a(B).
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Security

Hardness problem: Given E and E/A, find A.

Fastest known attack is meet-in-the-middle search (Galbraith,
Hess, Smart 2002):

_ En
A
/ Ei \
 Ex
E — B o EJA
\ E22 /
. En
Es . .
E3>
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Attack complexity

Alice | Bob
Classical | v/2¢ V3f
Quantum | V/2e | V/3f

For a generic meet-in-the-middle attack, the values in the table
are provable lower bounds.
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Parameter sizes and performance

Quantum security level of SIDH is conjecturally
min(2e/3,3f/3) ~ p1/6

Public key size (bits):
» 8log, p (naive)
» 6log, p (Costello et al., Crypto 2016 — no performance
penalty)
» 4log, p (Azarderakhsh et al., AsiaPKC 2016 — some
performance penalty)
» Example: For 128-bit quantum security,

» 6log, p bits = 4608 bits = 576 bytes
» 4log, p bits = 3072 bits = 384 bytes

Performance:

» 14 ms per key-exchange round on x86-64 (Costello et al.,
Crypto 2016)
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Open problems

v

Generalizations (hyperelliptics, Jacobians)

v

Cryptanalysis (classical and quantum)

v

Protocols (authentication, signatures)

v

Performance improvements
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