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INTRODUCTION
GP Model selection



Problem

• Gaussian processes (GPs) are powerful models able to
express a wide range of structure in nonlinear functions.

• This power is sometimes a curse, as it can be very
difficult to determine appropriate models (e.g.,
mean/covariance functions) to describe a given dataset.

• The choice of model can be critical! . . . How would a
nonexpert make this choice? (usually blindly!)

• Our goal here will be to automatically construct a useful
model to explain a given dataset.
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Simple grammar1

K 7→ {SE, RQ, LIN, PER, . . . }

K 7→ K ∗K

K 7→ K +K
SE+PERRQ

PERSE

1Duvenaud, et al. ICML 2013
Introduction Model selection 5



The problem

We want to automatically search a space of GP models (i.e.,
parameterized mean/covariance functions with priors over
their parameters)

M = {M}
to find the best one to explain our data.
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Objective function

In the Bayesian formalism, given a dataset D, we measure the
quality of a modelM using the (log) model evidence, which
we wish to maximize:

g(M;D) = log

∫
p(y | X, θ,M)p(θ | M) dθ

This is intractable, but we can approximate, e.g.:
• Bayesian information criterion (BIC)
• Laplace approximation
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Optimization problem

We may now frame the model search problem as an
optimization problem. We seek

M∗ = arg max
M∈M

g(M;D).
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Previous work: Greedy search2

SE RQ · · · PER

SE+RQ . . . . . . RQ*PER

SE+RQ*PER . . . . . . RQ*PER*PER

2Duvenaud, et al., ICML 2013
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OBSTACLES
Why this is a hard problem



The objective is nonlinear and nonconvex

• The mapping from models to evidence is highly complex!
• Even seemingly “similar” models can offer vastly different
explanations of the data.

• . . . and this similarity depends on the geometry of the
data!

• Imagine a bunch of isolated points. . .
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The objective is expensive

Even estimating the model evidence is very expensive. Both
the BIC and Laplace approximations require finding the
MLE/MAP hyperparameters:

θ̂M = arg max
θ

log p(y | X, θ,M)

This can easily be O(1000N3)!
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The domain is discrete

Another problem is that the space of models is discrete;
therefore we can’t compute gradients of the objective.
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BAYESIAN OPTIMIZATION?
Why not?



A case for Bayesian optimization!

We have a
• nonlinear,
• gradient-free,
• expensive,
• black-box optimization problem. . .

. . .Bayesian optimization!
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Overview of approach

We are going to model the (log) model evidence function with
a Gaussian process in model space:

g : M→ log p(y | X,M)

p
(
g(M;D)

)
= GP(g;µg, Kg).

(How are we going to construct this??)
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Overview of approach

Given some observed models and their evidences:

Dg =
{(
Mi, g(Mi;D)

)}
,

We find the posterior p(g | Dg) and derive an acquisition
function

α(M;Dg)
that we maximize to select the next model for investigation.

(How are we going to maximize this??)
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THE EVIDENCE MODEL



Evidence model: mean

We need to construct an informative prior over the log model
evidence function:

p
(
g(M;D)

)
= GP(g;µg, Kg).

For the mean, we simply take a constant. . .

. . . what about the covariance?
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The “kernel kernel”

The covariance Kg measures our prior belief in the correlation
between the log model evidence evaluated at two kernels.

Here we consider two kernels to be “similar” for a given
dataset D, if they offer similar explanations for the latent
function at the observed locations.
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The “kernel kernel”

A modelM induces a prior distribution over latent function
values at given locations X:

p(f | X,M) =

∫
p(f | X, θ,M)p(θ) dθ

This is an (infinite) mixture of multivariate Gaussians, each of
which is a potential explanation of the latent function values f
(and thus for the observed data y).
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The “kernel kernel”

Given input locations X, we suggest two modelsM andM′

should be similar when the latent explanations

p(f | X,M) p(f | X,M′)

are similar; i.e., they have high overlap.
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Measuring overlap: Hellinger distance

Omitting many details, we have a solution: the so-called
expected Hellinger distance

d̄2H(M,M′;D)

(the expectation is over the hyperparameters of each model).
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The “kernel kernel”

Now our “kernel kernel” between two modelsM andM′,
given the data D, is defined to be

Kg(M,M′;D, `) = exp

(
− 1

2`2
d̄2H(M,M′;D)

)
.

Crucially, this depends on the data distribution!
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“Kernel kernel:” Illustration

SE+PERRQ

PERSE SE RQ PER
SE+
PER

SE

RQ

PER

SE+
PER
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OPTIMIZING THE
ACQUISITION FUNCTION



Overview of approach

We have defined a model over the model evidence function.
We still need to figure out how to maximize the acquisition
function (e.g., expected improvement)

M′ = arg max
M∈M

α(M;Dg).
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Active set construction

Our idea: dynamically maintain a bag of (∼500) candidate
models and optimize α on that smaller set.

To construct this set, we will heuristically encourage
exploitation and exploration.
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Active set construction: Exploitation
Exploitation: add models near the best-yet seen.

SE RQ · · · PER

SE+RQ . . . . . . RQ*PER

SE+RQ*PER . . . . . . RQ*PER*PER
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Active set construction: Exploration
Exploration: add models generated from (short) random walks
from the empty kernel.

SE RQ · · · PER

SE+RQ . . . . . . RQ*PER

SE+RQ*PER . . . . . . RQ*PER*PER
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EXPERIMENTS



Experimental setup

• We compare our method (Bayesian optimization for
model selection, BOMS) against the greedy search method
from Duvenaud, et al. ICML 2013.

• Laplace approximation for estimating model evidence.
• Budget of 50 model evidence computations.
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Model space: CKS grammar

• For time-series data, the base kernels were SE, RQ, LIN,
and PER.

• For higher-dimensional data, the base kernels were SEi
and RQi.
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Experimental setup: Details for BOMS

• First model selected was SE.

• Acquisition function was expected improvement per
second.
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Results: Time series
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Results: High-dimensional data
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Notes

• The overhead of our method in terms of running time is
approximately 10%.

• The vast majority of the time is spent optimizing
hyperparameters (random restart, etc.).

• We offer some advice for automatically selecting
reasonable hyperparameter priors for given data that we
adopt here.
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Other options

For Bayesian optimization, may want to choose another family
of kernels, e.g.,
• Additive decompositions (Kandasamy, et al., ICML 2015)
• Low-dimensional embeddings (Wang, et al., IJCAI 2013,
Garnett, et al. UAI 2014)

Both would be convenient for optimization for other reasons
(e.g., easier optimization of the acquisition function)
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LOOKING FORWARD



Looking forward

These results are promising, but the real promise of such
methods is in the inner loop of another procedure (e.g.,
Bayesian optimization or Bayesian quadrature)!
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Future code snippet?

data = [];
models = [SE];

for i = 1:budget
% use mixture of models in acquisition function
x_next = maximize_acquisition(data, models);
y_next = f(x_next);
data = data + [x_next, y_next];

% update bag of models
models = update_models(data, models); % BOMS

end
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THANK YOU!
Questions?
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